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sic, short bursts of action potentials when 
triggered by salient events (6). These neu-
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rons release norepinephrine (NE), which 
can modify neural activity and excitability 
(7) as well as the expression of certain 
genes, including IEGs (8). 

Does the LC play a role in the increased 
expression of transcription factors that oc
curs during the waking state? To analyze 
this possibility, we implanted electrodes in 
rats for electroencephalographic (EEG) and 
electromyographic recordings; we then ad
ministered a unilateral injection into the 
LC of 6-hydroxydopamine (6-OHDA), a 
neurotoxin that destroys catecholaminergic 
neurons (9). In rats in which the LC was 
not lesioned, we observed little or no Fos 
protein expression after 3 hours of sleep 
(N = 7; Fig. 1A), but there was a marked 
bilateral expression of Fos in cerebral cor
tex, hippocampus, and other brain areas 
after 3 hours of waking induced by sleep 
deprivation (N = 8; Fig. 1A) (10). In con
trast, in sleep-deprived rats in which the LC 
of one side had been lesioned (N = 9), Fos 
expression was almost abolished in cortical 
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areas and hippocampus on the lesioned side, 
whereas on the intact side, Fos levels were 
high and comparable to those observed in 
normal animals after periods of waking (Fig. 
IB) (11). The extent and effectiveness of 
LC lesions were determined by examining 
quantitatively the disappearance of NE cell 
bodies in the LC and of NE fibers in target 
cortical regions (Fig. IB) (12). On average, 
in cortical areas in which NE fibers were 
reduced by more than 80%, Fos expression 
after waking was reduced by 76 ± 8% 
(mean ± SEM, P < 0.001, Wilcoxon 
signed-rank test for matched pairs) with 
respect to the intact side (13). In all ani
mals examined, Fos immunoreactivity de
creased in close spatial correspondence with 
the disappearance of NE innervation, even 
at the level of individual NE fibers. The 
reduction of Fos protein on the lesioned 
side was accompanied by a comparable de
crease of c-Fos mRN A as revealed by in situ 
hybridization (N = 3) (14, 15). 

Because there is evidence that the re
lease of NE may be responsible for the 
increased levels of IEG expression that are 
observed after stressful manipulations (16), 
we also examined Fos expression in rats 
with unilateral LC lesions that had been 
spontaneously awake for 3 hours in the dark 
without any external intervention. The rats 
were killed at least 2 to 3 weeks after sur
gery, when percentages of recording time 
spent in different behavioral states had re
turned to control values. As in animals 
killed after sleep deprivation in the light, 
Fos levels were high on the intact side but 
very low or absent in cortical areas depleted 
of NE fibers (77 ± 1% reduction, N = 6, 
P < 0.001) (Fig. 2, A and B). Thus, the 
expression of Fos in cortex and hippocam
pus was due to the waking state per se rather 

Neuronal Gene Expression in the Waking State: 
A Role for the Locus Coeruleus 
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Several transcription factors are expressed at higher levels in the waking than in the 
sleeping brain. In experiments with rats, the locus coeruleus, a noradrenergic nucleus 
with diffuse projections, was found to regulate such expression. In brain regions depleted 
of noradrenergic innervation, amounts of c-Fos and nerve growth factor-induced A after 
waking were as low as after sleep. Phosphorylation of cyclic adenosine monophosphate 
response element-binding protein was also reduced. In contrast, electroencephalo
graphic activity was unchanged. The reduced activity of locus coeruleus neurons may 
explain why the induction of certain transcription factors, with potential effects on 
plasticity and learning, does not occur during sleep. 
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Fig. 1. (Ai Fos expression in sleep and waking in rats with an intact norad- 
renergic system. Plots (top panel) illustrate the last three recording hours (tick 
marks) for a rat that was mostly asleep (left panel) and for one that was kept 
awake by sleep deprivation (right panel); W, waking; N. NREM sleep; R, REM 
sleep [see (70) for details]. Photomicrographs of Fos staining In piriforrn 
cortex from these two rats show that Fos expression is low after sleep (left 
panel) and high after waking (right panel). Scale bar, 200 prn. (6) Fos expres- 
sion after 3 hours of sleep deprivation after unilateral neurotoxic lesions of the 
LC. The plot of the last three recording hours shows that the animal was kept 
awake. The photomicrograph below the sleep-waking plot shows a brain- 
stem section at the level of the LC stained with tyrosine hydroxylase VH) 
immunocytochemistry. TH-positive cells in the left LC were lesioned (lower 
arrow), whereas the right LC and more ventral catecholaminergic nuclei were 
spared. Upper arrow indicates the track of the injection through the cerebel- 
lum. Scale bar, 1 mm. Photomicrographs of dopamine-P-hydroxylase 
(DBH) imrnunocytochernistry in piriforrn cortex show the decrease in nor- 
adrenergic innervation on the side where the LC was lesioned (left panel) 
with respect to the side where it was intact (right panel). Photomicrographs 
of Fos staining from adjacent sections on the lesioned side (left panel) and 
on the intact side (right panel) show that the expression of Fos after 3 hours 

than to stress; furthermore, an intact LC 
was essential for such expression (1 7). 

Differences in IEG expression between 
sleep and waking are not limited to c-Fos 
(1 7, 18). The quantities of NGFI-A, anoth- 
er IEG that has higher basal levels of ex- 
pression than c-Fos and that is induced 
more rapidly in response to physiological 
stimuli (19, 20), are also much higher in 
waking than in sleep (17, 18). We exam- 
ined the expression of NGFI-A by immu- 
nocytochemistry on sections from animals 
with LC lesions adjacent to those used for 
Fos. We found that, as with Fos, NGFI-A 
concentrations in animals that had been 
awake were high on the intact side but were 
lower in cortical areas depleted of NE fibers 
(Fig. 2C). In contrast to Fos, a moderate 
amount of NGFI-A staining persisted after 
LC lesions, which is in accord with the 
persistence of a basal expression of this gene 
during sleep (1 7, 18). 

Although there are a number of mecha- 
nisms by which NE release during waking 
might facilitate the induction of IEGs, an 
important pathway involves the phospho- 
rylation of cyclic adenosine monophos- 
phate response element-binding protein 
(CREB), which can act on the promoters 
for c-Fos and NGFI-A (21 ). Using an anti- 
body specific for the phosphorylated Ser133 
residue of CREB (P-CREB), we examined 
the amount of P-CREB in brain sections 
from rats in which the LC had been le- 

of sleep deprivation in areas in which noradrenergic innervation is reduced 
is as low as after periods of sleep. 

sioned on one side. We found that P-CREB ing (Fig. 2C). Given the similar distribution 
concentrations were considerably reduced of Fos expression during waking and of 
in cortical areas depleted of NE fibers (Fig. P-adrenergic receptors in the cortex (22), 
2D), in close correspondence with the de- this result suggests that NE released by LC 
crease in Fos (Fig. 2B) and NGFI-A stain- terminals during waking may induce Fos by 

Fig. 2. Expression of lEGs after 3 
hours of spontaneous waking fol- 
lowing unilateral neurotoxic lesions 
of the LC. (A) TH immunocyto- 
chemistry of a rat with a lesion of the 
left LC that was killed after 3 hours 
of spontaneous waking in the dark. 

'The panels show left and right pari- 
etal cortex, respectively. Scale bar, 
200 pm. (B) Expression of Fos. 
Photomicrographs from adjacent 
sections show that Fos staining af- 
ter spbntaneous waking is high on 
the intact side (right) and almost ab- 
sent on the lesioned side (left). (C) 
Expression of NGFI-A. NGFI-A 
staining is also higher on the intact 
side (right) than on the lesioned side 
(left). (D) Expression of P-CREB. 
The number of P-CREB-positive 
cells is lower on the side where the 
noradrenergic innervation has dis- 
appeared (left). 
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Fig. 3. Dissociation between the effects of lesions of A 
the noradrenergic system on gene expression and on 
EEG activation. (A) Fos, NGFI-A, and P-CREB immu- 
noreactivity in waking decreases after unilateral neu- 
rotoxic lesions of the LC. Mean percentage of stained O IJ 

cells on the lesioned side (intact side = 100%) in rats g .;; 
killed after sleep deprivation or after spontaneous 22 40 waking where there was a widespread unilateral de- 
crease in cortical NE innervation. Values refer to cor- 20 
tical areas where noradrenergic innervation was re- 
duced was significant by >80%. for The Fos, decrease NGFI-A, and on the P-CREB lesioned (N = side 9, ~='~h 0 Fos NGFI-A PCREB 

P < 0.001, Wilcoxon signed-rank test for matched 
pairs). (B) Raw EEG patterns are not modified. Raw B 
EEGs were recorded from the intact (EEG R) and 
lesioned (EEG L) sides of the rat whose brain sections , 
are shown in Fig. 2. The EEG (scale bar, 500 pV) and g 
the electromvoaram [scale bars, 150 LLV (vertical) and ' -.' 
1 s (horizont~l)~corr~spond to the transition between 
sleep and waking., A 

S 
W I 

acting through a pathway that leads from 
P-adrenergic receptors to CREB phospho- 
rylation (23). 

Finally, we asked whether the reduction 
in IEG expression after lesions of the LC 
could be a result of the disappearance of the 
normal EEG activity seen in the 'waking 
state, because IEG expression is known to 
be activity dependent (20, 24). Thus, we 
examined the EEG of rats in which LC 
lesions had produced a widespread decrease 
of NE fibers in one hemisphere (Fig. 3). 
There was a relative decrease in the number 
of Fos-, NGFI-A-, and P-CREB-stained 
cells on the lesioned side in these animals 

(Fig. 3A). Despite this decrease, we did not 
detect differences between the raw EEG on 
the intact and lesioned side in any of these 
animals (one example is shown in Fig. 3B). 

Because patches of spared NE fibers and 
volume conduction effects could have par- 
tially masked a change in the EEG, another 
group of rats received a systemic injection 
of N-(2-chloroethy1)-N-ethyl-2-bromoben- 
zylamine (DSP-4) to destroy NE innerva- 
tion of the cortex bilaterally and diffusely; 
they were killed 8 to 10 days later after 3 
hours of waking. This neurotoxin selective- 
ly destroys NE fibers originating from the 
LC with a mechanism of action different 

Fig. 4. (A) Reduction of Fos expression after 3 hours of sleep deprivation 
following bilateral lesions of LC terminals as a result of DSP-4 injections. M 
immunccytochemistry in parietal cortex of a control animal (left panel) and of 
an animal that had received an injection of DSP-4 leading to a decrease in 
noradrenergic innervation (right panel). Photomicrographs are of Fos staining 
from adjacent sections from the control animal (left panel) and the animal 
injected with DSP-4 (right panel). Both animals were sleep-deprived for 3 
hours. Fos concentrations are high in the control and low in the animal 
injected with DSP-4. Scale bar, 200 pm. (B) EEG power denslty is not 
modified. Mean power density of the EEG for different behavioral states 

from that of 6-OHDA (25). In all animals 
in which NE fibers in the cerebral cortex 
were bilaterally reduced (>90%, N = 5), 
there was a bilateral reduction of Fos (Fig. 
4A), NGFI-A, and P-CREB staining with 
respect to controls that was similar in mag- 
nitude to that observed unilaterally after 
LC lesions with 6-OHDA. Both the raw 
EEG and its power density spectrum were 
not significantly different before and after 
(8 to 10 days) injection of DSP-4 (Fig. 4B) 
(26). Thus, in the absence of an intact NE 
system, waking behavior accompanied by 
low-voltage fast activity patterns is not suf- 
ficient for induction of IEGs. Conversely, it 
is likely that IEG expression is low during 
sleep because of the low level of LC activity 
rather than because of the presence of high- 
voltage slow activity per se. The low level of 
activity during sleep of other neuromodula- 
tory systems with diffuse projections, such 
as the serotoninergic and the histaminergic 
systems, may also play a role [compare with 
(511. 

These results demonstrate a dissociation 
between the role of the LC in EEG activa- 
tion and in activation of IEGs during the 
waking state. The activation of the EEG 
corresponds to the transition from a pattern 
of high voltages and low frequencies during 
sleep to one of low voltages and high fre- 
quencies during waking (27). As we .have 
shown, although LC lesions have no persis- 
tent effects on EEG patterns of waking (28), 
they have striking and persistent effects on 
the expression of IEGs, which is reduced to 
the levels found in sleep. On the other 
hand, neural activation has also been de- 
fined as a readiness to react to external, 

2.5' 
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recorded before (solid line) and after (dashed line) DSP-4 injections, resulting 
in a >90% decrease in noradrenergic innervation with respect to matched 
controls. Power densities expressed as percentage of the mean value during 
NREM sleew for each animal are wlotted on a loaarithmic scale. Dots indicate 
the standa;d deviation of power density values'before the injections (N = 5) 
for each freauencv bin. Des~ite the marked bilateral reduction in Fos, NGFI- 
A, and P-CREB staining in 'cortex and hippocampus in these animals, the 
mean spectrum after DSP-4 injection was within 1 SD of the values observed 
before DSP-4 injection, and no significant difference was found for any 
frequency bin ( Wilcoxon signed-rank test for matched pairs). 
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salient signals (29), and NE release, which 
is high during waking, can enhance die 
readiness of neurons to respond to such 
signals by increasing their signal-to-noise 
ratio (7). It is possible that, by modifying 
second messenger concentrations, protein 
phosphorylation (30), or synaptic activity 
in ways not detected by the EEG, the re
lease of NE by LC neurons may also lead to 
the activation of certain transcription fac
tors during waking and permit the animal to 
respond to salient extrinsic signals with 
long-term changes in neural function. The 
expression of P-CREB and of IEGs has been 
linked to phenomena such as learning, de
velopmental plasticity, and long-term po
tentiation (31). Likewise, several lines of 
evidence indicate that a sufficient quantity 
of NE is required for these phenomena to 
occur {32). A difference in the amount of 
NE release may explain why learning and 
conditioning, inasmuch as they require the 
activation of transcription factors, occur 
more readily during waking than during 
sleep {33). This might also explain why 
events occurring during rapid eye move
ment (REM) sleep are generally not re
membered (34), given that in this state, 
although the EEG pattern is similar to that 
in waking, LC cells are not firing. If differ
ences in the induction of transcription fac
tors similar to those observed between wak
ing and sleep also occur between other con
ditions associated with high LC activity, 
such as orienting to novel stimuli, associa
tive learning, and exploratory behavior, and 
with low LC activity, such as grooming and 
consummatory behavior (6), then the firing 
of the LC may well be a key factor in 
determining whether neural activity is ac
companied by neural plasticity. 
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