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Our aim was to survey isolates of E. coli 
and S. enterica, implicated in food-related 
outbreaks of disease, for hypermutable 
strains. We screened a portion of the Food 
and Drug Administration's bacterial patho­
gen collection and natural E. coli (5) and S. 
enterica (6) reference collections for the 
frequency of mutations conferring resis­
tance to the antibiotic rifampicin. Under 
plating conditions that yielded 0 to 5 mu­
tants per 108 cells for most isolates, 26 
putative mutators exhibiting up to 1000-
fold greater frequencies of rifampicin-resis-
tant (RifR) mutants were observed in both 
E. coli and S. enterica (Table 1). Putative 
mutators were isolated from single colonies 
and tested for a general mutator phenotype 
by determination of the frequency of muta­
tions that conferred resistance to each of 

Table 1. Rifampicin-resistant mutants in isolates 
of E. coli and S. enterica. Cultures were grown in 
BHI broth overnight at 37°C; LB medium was 
used for plating, including selection for rifampicin 
resistance (100 |xg/ml). Putative mutators dis­
played at least a 50-fold increase in mutation fre­
quency as compared with control levels. Mutator 
percent is the number of mutator phenotypes per 
number of isolates examined times 100. 

Number of isolates 

Total Putative Mutator 
analyzed mutator (%) 

0157:H7 
Other serotypes 
ECOR collection 

S. enteritidis 
Other serovars 
SARC collection 

E. coli 
120 
20 
72 

S. enterica 
15 

106 
16 

5 
3 
1 

1 
14 
2 

2(1.7) 
1 (5.0) 
1(1.4) 

1 (6.7) 
3 (2.8) 
1 (6.2) 

High Mutation Frequencies Among Escherichia 
coli and Salmonella Pathogens 

J. Eugene LeClerc, Baoguang Li, William L. Payne, 
Thomas A. Cebula* 

Here it is reported that the incidence of mutators among isolates of pathogenic Esch­
erichia coli and Salmonella enterica is high (over 1 percent). These findings counter the 
theory, founded on studies with laboratory-attenuated strains, that suggests mutators 
are rare among bacterial populations. Defects in methyl-directed mismatch repair un­
derlie all mutator phenotypes described here. Of nine independently derived hypermut­
able strains, seven contained a defective mutS allele. Because these mutant alleles 
increase the mutation rate and enhance recombination among diverse species, these 
studies may help explain both the rapid emergence of antibiotic resistance and the 
penetrance of virulence genes within the prokaryotic community. 
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Table 2. Mutation frequency of hypermutable clones. Frequencies 5 SD represent three to seven 
determnations from Independent cultures. EC536 and SL12 served as controls for E coli and S. 
enterica, respectively (27). 

Mutants per 10' cells 
Isolate 

RifR Spc NalR 

EC536 
EC503 
EC535 
DEC5A 
ECOR48 
S enteritidis (SL12) 
S enteritidis (C396) 
S berta (SL78) 
S halmstad (SL58) 
S arizonae (S2978) 
S infantis (SL101) 

the antibiotics specti~lornycin, llalidixic 
acid, and rifampicin. This screen identified 
nine hypermutahle strains (Tahle 2). Anti- 
hiotic-resistant colonies in the remaining 
17 strains aere attrihutahle to suhpopula- 
tions of mutants (up to lo- ')  that resided 
in the or~ginal cultures. Each subpopulation 
bvas resistant to only one of the a~ltihiotics. 
Clonality of preexisting mutants was con- 
firmed hy sih selection (7), in which mu- 
tants aere isolated without expcxure of hac- 
teria to antibiotic selection. 

The E .  coli mutator collectio~l comprises 
two Ol57:H7 strains, an O55:Hi isolate 
that is one of the  liarr rhea genic E .  coli 
(DEC) clones (8 ) ,  anJ ECOR48 (5), 
whereas the Salmonella serles includes fo~lr 
different serovars and the SARC strain 
S2978 (6) .  The occurrence of nine i~lde-  
pemlent hypermutahle strains alnong 349 
E.  coli and S .  enterica isolates surveyed in- 
dicates a11 incidence of 2.696, distrih~lted 
within a range of 1.4 to 6.7% (Table 1).  
Among natural pop~llations at large, the 
incidence of hypermutable strains may be 
greater (9) .  

The magnitude of the increases in mu- 

tagenesis over control levels (10' to 10') is 
characteristic of E. coli and S. typhimurium 
strains clefective in MMR. Four proteins 
essential for mismatch correction-MutH, 
MutL, MutS, and UvrD (or MutU)-are 
candidates for being defective in these mu- 
tators. Thus, hypermutable stralns were 
transfc)rmeJ with plas~nids containi~lg each 
of the wild-type genes for these products. 
Cornple~nentation analysis showed that 
each of the nine mutators co~ltained a de- 
fective MMR allele. Seven, incl~l~ling the 
four E.  coli isolates, carried a mutS defect 
(Table 3).  

Molecular studies of the E .  coli mutS 
ln~ltators a e r e  co~lducted to verify genetic 
results. Concordance with the sequence of 
E.  coli K12 was established by cloning and 
sequencing of mutS from an E .  colr 0 1 5 7 :  
H7 nonmutator strain, EC536. Relative to 
E .  coli K12, mutS of E.  coli Ol57:H7 is 
u~lrernarkable. Tha t  is, its sequence of 
2735 base pairs (bp), enco~npassing the 
2562-bp mutS gene, is 97.8493 similar to 
that of its K12 counterpart, yielding 
99.88% identical M L I ~ S  products (10). 
However, long polymerase chain reaction 

(PCR) analysis ( 1  1 ) of the 12-kh fnlA- 
mutS-rpoS region reveale~l that the se- 
quence 3' to mutS is markedly different 
from that of E.  coli K12 (Fig. 1 ) .  Nucleo- 
tiJe sequencing of a lirnite~l portion of the 
region hetween mutS and rpoS sho~ved that 
EC536 contains novel DNA sequence 
(about 2750 bp) in place of 6098 bp of 
K12 sequence (1 2 ) .  Oligonucleotide probe 
a~~alyses  (13)  co~lfirrned that the unusual 
sequence icle~ltified in EC536 is present in 
all ~ l o n ~ n u t a t o r  0 1  57:H7 strains studied 
and also in isolates of E. coli O55:H7, 
~vhich is evolutionarily the closest sibling 
to 0 1  57:Hi (8 ) .  Contrary to nonmutator 
strains, analysis of E.  coli rnutatilrs ~ n ~ l i -  
cated the presence of larger deletions that 
directly affect mutS. Long PCR results 
showed that Ol57:H7 rnutator EC503 
contains a delet io~l  of 7489 2 48 bp rela- 
tive to the K12 strain W3110, or approx- 
imately 4100 hp as compared with its 
Ol57:H7 progenitor (Fig. 1) .  Seque~lce 
analysis co~lfirrned that a deleti011 of 7449 
bp extends 212 bp into the 3 '  end of mutS, 
with identical sequence ( G A G G T A A T )  
residing at the deletion endpoints (14). 

The inciclence of hypermutable mutants 
among pathogenic strains (>I(%>) 1s alarm- 
ingly high co~lsidering that, at equilibrium, 
the frequency of deleterious alleles within a 
pop~llation is expected to be l o p i  to lop '  
(15). Our results, however, were partially 
presaged by chemostat cornpetition analyses 
(16). Moreover, very recent studies show 
that when a series of E.  coli R cultures are 
propagated for tho~lsan~ls of ge~leratio~ls un- 
der glucose-limiting conditions, some con- 
vert to a mutator phenotype (17). Two 
previous studies note~l  mutators alnong nat- 
ural E .  coli populations (18), though neither 
suggestecl the possibility that a mutator phe- 
notype may be found Inore freq~le~ltly 
among human pathogens ( 19). 

T h e  rnutators isolate~l here (mutS, 
mutH, and uvrD ~lefects) portend an inti- 

Table 3. Suppression of mutator actlvlty by pasmld clones contalnlng wd-type mut genes (28). Positive complementat~on IS sgnlfied by >97% suppresson 
of the mutator phenotype as assessed by spontaneous mutagenesls to rlfampicin resistance. Percentage of suppression -t SD represents three or more 
determinations from independent cultures, except for S. typhimurium TW541, a known mutS-defective straln, which is the average of two experiments. 

Isolate 

EC503 56.4 -t 11.2 39.0 -t 7.6 97.3 -t 1 .O 19.1 2 11.9 40.2 ? 8.1 
EC535 55.5 + 10.0 38.2 5 31.7 98.6 ? 0.6 44.2 ? 6.6 43.4 ? 17.9 
DEC5A 44.2 -t 22.7 55.0 -t 4.0 99.3 ? 0.3 60.5 ? 12.8 62.1 -t 6.9 
ECOR48 30.6 -t 18.6 26.6 5 13.6 97.9 5 1.9 46.0 ? 14.7 N DS 
S. enteritidis C396 46.7 2 10.8 32.2 -t 9.1 98.9 -t 1 .O 43.8 ? 14.7 N D 
S. berta SL78 99.3 2 0.6 46.4 5 17.6 43.3 5 8.8 61.6 ? 12.5 N D 
S. halmstad SL58 50.4 5 16.7 32.6 -t 8.4 99.2 -t 0.2 55.6 ? 8.0 N D 
S. arizonae 52978 37.3 ? 9.4 45.5 5 5.7 38.3 5 17.9 98.5 ? 2.1 ND 
S, infantis SLl 01 39.9 -t 19.0 50.9 -t 4.5 99.4 ? 0.8 18.6 ? 14.4 N D 
S. typhimurium TW541;- 60.0 69.1 99.4 33.7 37.3 

'pBR322-transformed isolates were used to determine the extent of nonspecific suppression by vector DNA alone. ;Salmonella typilimwrium TW541 contains a Tn 10 insertion 
in the mutS gene and was used to distinguish complementation and nonspecific suppression. :6ND. no determination. 
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mate role for methyl-directed mismatch 
repair in the emerging pathogen problem. 
Because MMR limits recombination be- 
tween diverged sequences (4), inactiva- 
tion of this system relaxes normal recom- 
bination barriers among species, offering a 
potential pathogen the opportunity to in- 
herit, by horizontal transmission, useful 
genes from the reservoir of commensal and 
pathogenic bacteria at large. Promiscuity, 
then, might drive selection of these kinds 
of mutators among successful pathogens. 
Our findings offer an explanation of how 
virulence genes such as the spa-inv loci (6, 
20) and the eae and slt genes (8) have 
come to reside in S. enterica and E. coli 
0157:H7, respectively. It is of special in- 
terest that the left and right junctions of 
the 40-kb pathogenicity island found in 
Salmonella, but not in E. coli, originate in 
the 3' portion of fhlA and the 5' portion 
of mutS, respectively (20). 

A mutator phenotype should be to the 
pathogen's advantage, affording strategies 
(mutation and recombination) that permit 
rapid variation in an unstable environment 
in order, for example, to escape immune 
surveillance or elude therapeutic interven- 
tion (antibiotic resistance). The ability to 
generate a large number of mutations for 
adaptation in a changing environment; the 
opportunity to establish and propagate in 
the new niche of its host (21 ); the increased 
potential for gene acquisition; and the req- 
uisite linkage of the mutator phenotype, in 
the absence of recombination, to any ben- 
eficial phenotype (22) spur selection of a 

W3110 EC536 EC5W -- - 
A B C D E F G H I  J K  

Fig. 1. Agarose gel analysis of long PCR products 
from the mutS region of E. coli strains W3110, 
EC536, and EC503 (29). 3' primers at a fixed site 
in rpoS (R3) were paired with 5' primers at a site in 

(F2), at the beginning of mutS (S8), or at its 
end (L119). Primer sets were designed to amplify 
products of 12,045 bp (F2-R3; lanes B, E, and H); 
10,668 bp (S8-R3; lanes C, F, and I); and 8477 bp 
(L119-R3; lanes D, G, and J), based on E. coli K12 
sequence (70). Lanes A and K, 1 -kb ladder (Gibco 
BRL). 

mutator. In contrast, placed in a static en- 
vironment. the same bacterium might be " 
destined for extinction (that is, mutations 
in vital genes are lethal), although induc- 
tion of suppressor mutations can quiet the 
mutator activity (23) and attenuate this 
outcome. ~ ~ 

It would seem that the ultimate patho- 
gen would possess an elevated mutation 
rate that is transient (or conditional), pro- 
viding genetic variation during the first 
few hours when the pathogen must sur- 
vive, invade, and colonize its host. Two 
aspects of our findings are relevant to this 
point. First, altered sequence found in E. 
coli 0157:H7 and 055:H7 positions rpoS, 
which encodes the major stationary phase- 
specific sigma factor for RNA polymerase 
(24), closer to mud, furnishing opportuni- 
ties for control of MutS activity under the 
very conditions in which mutator activity 
may be advantageous (such as the station- 
ary phase, nutrient starvation, and physico- 
chemical stress). It is known that MutS is 
regulated downward in stationary-phase E. 
coli K12 cells, although the molecular 
means of its regulation are not understood 
(25). As mutS and rpoS are in an antipolar 
configuration, we are currently investigat- 
ing whether an antisense strategy, the result 
of transcription read-through from the op- 
positely oriented rpoS gene, controls MutS 
activity under certain conditions of envi- 
ronmental stress in E. coli 0157:H7. Sec- 
ond, given that most putative mutators 
among E. coli and Salmonella pathogens 
(Table 1) contained subpopulations with 
multiple but separate antibiotic resistances, 
stochasticallv an unlikelv result. one won- 
ders if these multiply mutated strains have 
passed through such a transient hypermut- 
able state. 

Finally, our findings appertain to cur- 
rent clinical situations in which antibiotic 
resistance is increasing dramatically 
among human pathogens (26). Although 
they are counter to the current paradigm 
that antibiotic resistance is due to the 
acquisition of plasmids harboring multiple 
drug-resistant determinants, our data show 
that chromosomal mutations might ex- 
plain at least some of the multiply drug- 
resistant organisms found clinically. These 
same mutator phenotypes could help ex- 
m lain how the ~lasmid-borne resistance 
heterminants firs; became linked (relaxed 
recombination between disparate species) 
and are now so readily inherited. 
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ministered a unilateral injection into the 
LC of 6-hydroxydopamine (6-OHDA), a 
neurotoxin that destroys catecholaminergic 
neurons (9). In rats in which the LC was 
not lesioned, we observed little or no Fos 
protein expression after 3 hours of sleep 
(N = 7; Fig. 1A), but there was a marked 
bilateral expression of Fos in cerebral cor­
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after 3 hours of waking induced by sleep 
deprivation (N = 8; Fig. 1A) (10). In con­
trast, in sleep-deprived rats in which the LC 
of one side had been lesioned (N = 9), Fos 
expression was almost abolished in cortical 
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areas and hippocampus on the lesioned side, 
whereas on the intact side, Fos levels were 
high and comparable to those observed in 
normal animals after periods of waking (Fig. 
IB) (11). The extent and effectiveness of 
LC lesions were determined by examining 
quantitatively the disappearance of NE cell 
bodies in the LC and of NE fibers in target 
cortical regions (Fig. IB) (12). On average, 
in cortical areas in which NE fibers were 
reduced by more than 80%, Fos expression 
after waking was reduced by 76 ± 8% 
(mean ± SEM, P < 0.001, Wilcoxon 
signed-rank test for matched pairs) with 
respect to the intact side (13). In all ani­
mals examined, Fos immunoreactivity de­
creased in close spatial correspondence with 
the disappearance of NE innervation, even 
at the level of individual NE fibers. The 
reduction of Fos protein on the lesioned 
side was accompanied by a comparable de­
crease of c-Fos mRN A as revealed by in situ 
hybridization (N = 3) (14, 15). 

Because there is evidence that the re­
lease of NE may be responsible for the 
increased levels of IEG expression that are 
observed after stressful manipulations (16), 
we also examined Fos expression in rats 
with unilateral LC lesions that had been 
spontaneously awake for 3 hours in the dark 
without any external intervention. The rats 
were killed at least 2 to 3 weeks after sur­
gery, when percentages of recording time 
spent in different behavioral states had re­
turned to control values. As in animals 
killed after sleep deprivation in the light, 
Fos levels were high on the intact side but 
very low or absent in cortical areas depleted 
of NE fibers (77 ± 1% reduction, N = 6, 
P < 0.001) (Fig. 2, A and B). Thus, the 
expression of Fos in cortex and hippocam­
pus was due to the waking state per se rather 

Neuronal Gene Expression in the Waking State: 
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Several transcription factors are expressed at higher levels in the waking than in the 
sleeping brain. In experiments with rats, the locus coeruleus, a noradrenergic nucleus 
with diffuse projections, was found to regulate such expression. In brain regions depleted 
of noradrenergic innervation, amounts of c-Fos and nerve growth factor-induced A after 
waking were as low as after sleep. Phosphorylation of cyclic adenosine monophosphate 
response element-binding protein was also reduced. In contrast, electroencephalo­
graphic activity was unchanged. The reduced activity of locus coeruleus neurons may 
explain why the induction of certain transcription factors, with potential effects on 
plasticity and learning, does not occur during sleep. 
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