
the nimA gene normally arrest in S and G2 

phase, respectively, but enter mitosis if bimE 
has been mutated (18). It is presently unclear 
why mutation of an APC subunit would cause 
this phenotype. One possibility is that mitotic 
cyclins accumulate in abnormal amounts in 
bimE mutants, resulting in premature en­
trance into mitosis. Alternatively, APC may 
negatively regulate other activators of mitosis 
such as NIMA (21). Others have proposed 
that APC may also regulate exit from S phase 
(22). Because APC is composed of eight sub-
units, it is conceivable that APC ubiquiti-
nates multiple proteins that regulate cell-cycle 
progression. 
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isolation of mutants defective in cyclin deg­
radation led to the identification of the tetra-
tricopeptide repeat proteins Cdcl6p, Cdc23p, 
and Cdc27p as subunits of the APC (4, 7, 8). 
These proteins are required for the onset of 
anaphase in various organisms (9, 10). Be­
cause cyclin proteolysis per se is not required 
for anaphase (2, 11), it has been suggested 
that the APC also targets for destruction pro­
teins whose degradation is necessary for sister 
chromatid separation (7, 12). 

Mitotic cyclins such as Clb2p are rapidly 
degraded in G{-arrested yeast cells (7, 13). To 
isolate mutants defective in cyclin proteolysis, 
we screened mutagenized colonies for (3-galac-
tosidase activity resulting from the accumula­
tion of a Clb2-lacZ protein in G{ at 37°C as 
described (7). We identified 18 mutants that 
arrested as large, budded cells with a 2C DNA 
content after cycling cultures were shifted 
from 25° to 37°C (14). Complementation 

Identification of Subunits of the 
Anaphase-Promoting Complex of 

Saccharomyces cerevisiae 
Wolfgang Zachariae,* Tae Ho Shin,*f Marta Galova, 

Brigitte Obermaier, Kim Nasmythl: 

Entry into anaphase and proteolysis of B-type cyclins depend on a complex containing 
the tetratricopeptide repeat proteins Cdc16p, Cdc23p, and Cdc27p. This particle, called 
the anaphase-promoting complex (APC) or cyclosome, functions as a cell cycle-regu­
lated ubiquitin-protein ligase. Two additional subunits of the budding yeast APC were 
identified: The largest subunit, encoded by the>APC7 gene, is conserved between fungi 
and vertebrates and shows similarity to BIMEp from Aspergillus nidulans. A small heat-
inducible subunit is encoded by the CDC26 gene. The yeast APC is a 36S particle that 
contains at least seven different proteins. 
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Fig. 1. Defective proteolysis and ubiquitination of mitotic cyclins in the cdc26-519 and apcl- 7 mutants. 
(A) Accumulation of Clb2p in GI-arrested -7- 7 cells. Wild-type (K5137) and -7- 7 cells (K6221) of 
the genotype MATa GALp-CLB2-HA3 barl were arrested in GI with a-factor in raffinose medium at 
23°C. Cells were transferred to raffinose-galactose medium containing a-factor at 35°C. Samples for 
immunoblotting and analysis of cellular DNA content were withdrawn at the indicated time points. (B) 
Ubiquitin-conjugating activity in extracts from a wild-type (K5518) (WT) and two cdc26-579 strains 
(K6200 and Y WZ13.5). Strains (MATa pqp4 barl) were arrested in GI with a-factor at 25°C and shifted 
to 37°C for 90 min. Extracts were incubated for 5 min with an adenosine triphosphateregenerating 
system and the indicated HA3-tagged cyclin substrate as described (8). Clb2ADBp lacks the destruc- 
tion box (2). Cyclin-ubiquitin conjugates were detected by immunoblotting with an antibody to HA. (C) 
Cyclin ubiquitination in extracts from GI-arrested wild-type (K1771) and apcl-7 cells (K6199). Strains 
were arrested with a-factor at 23°C and shifted to 37°C for 40 min. Molecular sizes are indicated on the 
left (in kilodattons). 
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Fig. 2. Coimmmunoprecipitation of Apcl p and Cdc26p with other subunits of the APC. (A) Association 
of Cdc26p and Apcl p with Cdcl 6p, and self-association of Apcl p. Extractswere prepared from strains 
expressing Myc- and HA-tagged proteins as indicated and subjected to immunoprecipitations with the 
antibody to HA (24). Epitope-tagged proteins in the extracts and the immunoprecipitates (Anti-HA IP) 
were detected by immunoblotting with the antibodies 12CA.5 (Anti-HA) or 9E10 (Anti-Myc). (B) Subunits 
of the yeast APC. Cells of several strains, each expressing a dierent Myc-tagged protein, were labeled 
with 35S-methionine and 35S-cysteine. Extracts were prepared and subjected to immunoprecipitations 
with the antibody 9E10 (anti-Myc) (24). Bound proteins were detected by fluorography. A protein whose 
precipitation does not depend on the Myc epitope tag is marked with an asterisk. 

Fig. 3. Cosedimentation 
of Apcl p, Cdcl6p. and 
Cdc26p as a 36s parti- 
cle. (A) An extract from 
an APC7-HA3 CDC76- 
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ClmSp, a subun~t of the --- 

m5 
19s proteasome-act~va- 
tor complex, and fatty 
acld synthetase (FAS, 40 6s) were detected w~th polyclonal rabb~t ant~sera (B) Extracts from 
CDCl6-HA3 CSEl-myc9 (K6184) and CDC76-HA3 CDC26-myc9 (K6323) stralns were 
separated on parallel grad~ents as described In (A) 

analysis i d  gene cloning demonstrated that 
we had isolated seven mutant alleles of CSEl, 
four of CDC16, one of CDC26 (cdc26-519), 
and a mutant allele of a gene that we called 
APCl (15). csel and cdcl6 mutants have 
been identified previously in a similar screen 
(7). The CDC26 gene encodes an acidic pro- 
tein of 17 kD (16). 

Induction of a GAL promoter-CLBZ- 
H A 3  fusion in Gl-arrested cells at 35OC 
resulted in the accumulation o f  Clb2- 
H A 3 p  wi th in 20 m i n  in the apcl-1 mutant 
but no t  in wild-type cells. Mutant cells 
initiated S phase after 60 m i n  but failed to  
bud, whereas wild-type cells stayed arrest- 
ed (Fig. 1A). A similar phenotype is 
caused by expression o f  a nondestructible 
form of Clb2p in wild-type cells (13). Ex- 
tracts prepared from GI-arrested cdc26-519 
and apcl-1 mutants were defective in ubiq- 
uitination of the mitotic cyclins Clb2p and 
Clb3p (Fig. 1, B and C), suggesting that 
reduced Clb2p proteolysis in the mutants 
stems from defective ubiquitination. 

At 37OC, cdc26-519 mutants arrested as 
large, budded cells containing a short mi- 
totic spindle in an undivided nucleus posi- 
tioned at the bud neck. Haploid cells lack- 
ing the entire CDC26-coding sequence 
were viable at 25OC but arrested wi th a 
similar phenotye at 37OC (1 7). This result 
confirms that CDC26 is only essential'at 
increased temperatures (16). Epitope tag- 
ging revealed that the amount of Cdc26p 
increased 10-fold when cells grown at 25OC 
were shifted to  37°C. In contrast, the 
amount of Cdcl6p did not  increase (18). 

The APCl wild-type gene (1 5) encodes 
a 1748-amino acid (192-kD) protein whose 
COOH-terminal half is similar to  the BIME 
protein from AspergiUus nidulans (1 9) and to 
a related protein encoded by the mouse 
tsg24 gene (20). An alignment of amino 
acids 904 to  1713 of Apc lp  shows 28 and 
25% identity to the corresponding regions 
o f  BIMEp (amino acids 121 7 to 1939) and 
Tsg24p (amino acids 1026 to  1777), respec- 
tively (21 ). Tetrad analysis of spores derived 
from a diploid in which one copy of APC l  

19s 40.6s Bottom + + 
3 4 s 6 7 8 9 10 111213141516171819 20 Fraction 

-1 
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was replaced by HIS3 showed that APC J is 
an essential gene (22). His+ spores arrested 
as large, budded cells after one or two cell 
divisions after germination. 

Cdcl6p, Cdc23p, and Cdc27p m i a t e  
with each other in yeast (10). Cyclin prote- 
olysis in vivo and cyclin ubiquitination in 
vitro also depends on the Csel protein (7,8). 

To investigate whether Cdc26p, Apclp, and 
Cselp associate with the Cdc16p-Cdc23p- 
Cdc27p complex, we modified the endoge- 
nous genes to encode variants carrying 
COOH-terminal hemagglutinin (HA) or 
Myc epitope tags (23). All of these variants 
were fully functional. Extracts were prepared 
from strains expressing two proteins with dif- 

ferent epitope tags and subjected to immuno- 
precipitations with the antibody to HA (24) 
(Fig. 2A). Cdcl6-Myc6p was coprecipitated 
with Apcl-HA3p but not with Csel-HA3p. 
Cdc26-Myc9p was coprecipitated with 
Cdcl6-HA3p. Apcl-Myc6p was coprecipi- 
tated with Apcl-HA3p from an extract pre- 
pared from an APC 1 -HA3/APC I -myc6 dip- 
loid strain. To characterize the complex fur- 
ther, we labeled various strains, each express- 
ing a different Myc-tagged protein, with j5S- 
methionine and 35S-cysteine (24) (Fig. 2B). 
The antibody to the Myc epitope precipitated 
the same set of proteins from extracts of 
CDC16-my&, CDC23-my&, CDC26-myc9, 
CDC27-myc9, and APCI-myc18 cells. This 
set included Cdcl6p, Cdc23p, Cdc27p, and 
Apclp, which were identified by the in- 
creased molecular size of epitope-tagged vari- 
ants, and a protein of 80 kD. A protein with 
a size close to that of Cdcl6p (100 kD) was 
detected in the immunoprecipitate from the 
CDC16-myc6 strain. None of these proteins 
was coprecipitated with Csel-Myc9p. These 
data, together with previous work (8, 10), 
suggest that cyclin ubiquitination in yeast de- 
pends on a complex containing at least two 
molecules each of Apclp, Cdcl6p, Cdc23p, 
and Cdc27p. Cdc26p and at least two uniden- 
tified proteins (p80 and p100) are also com- 
ponents of this complex. 

To determine the size of the yeast APC, 
we analyzed extracts from strains expressing 
two epitope-tagged proteins by glycerol den- 

Fig. 4. Nuclear localization of sub- 
units of the yeast APC. Control cells 
(No Myc, K1534) and cells contain- 
ing CDC16-myc6 (K6180), CDC26- 
myc9 (K6322), or APC1-mycl8 1 ~ 1  f w l . ~  

(K6329) were fixed, and Myc- 
tagged proteins were detected by 
indirect immunofluorescence (26). 
DNA was stained  with 4',6'-dia- 
midino-2-phenylindole (DAPI). 

CDC 7 6 

Fii. 5. Defect'be an- 
aphase in the apcl-1 w- 
tant. Small, unbudded G, 
cells were isdated by a- 
trikcgal elmiation from a 
wild-type (K639) and an 
w 7 - 1  (K5717) 
grow at 25°C. Cells were 
released into fresh medi- 
um at 37°C' and samples 
were withdrawn at the in- 
dicated time points (28). 
(A) Percentage of budded 
cells @), of cells comin- 
ing a short spindle in an 
undivided nucbu!5 (o), end 
of cells with separated 
chromosomes and an 
elongated spindle (late an- 
ap-t-) (.). EB) 
Distribution of the DNA 
content. (C) Clb2 protein 

Time al 37% (min) 

apcl-1 B Wild type 
DAPl 

and Clb2p-associated ki- 
nase activity. A clb2 deletion strain (K1890) was wed for negative contrds, and S&@J 
was detected as a loading control. (D) Defective Clb2p destructii and lack of astrd 
microtubutes in apcl- l cells. A wild-type (K6208) and an -7-1 (K61 31) strain, both 
containing CLB2-mycl2, were grown on plates at 25OC to obtain unbudded G, c&. 
Strains were inoculated into liquid medium at 37"C, and &Is were fixed after 3 hours. 
Tubulin (green) and Clb2-Mycl 2p (red) were detected by indirect irnrnunoflwxes- 
cence (26), and DNA was stained with DAPl (blue). Nom, Nomarski optics. 
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sity gradient centrif~~gation (25). ,4pcl- 
HA3p and Cdc23-HA3p cosedi~nented with 
Cdcl6-klyc6p as a 363 particle [Fig. 3.4 and 
(18)l. This size 1s larger than that reported for 
the Xenopus A P C  (2CS) (4) and the cyclo- 
some from clam (5).  Cdc26-klyc9p but not 
Csel-klyc9p cosedimented with Cdcl6-  
HA3p (Fig 3B). These results and the immu- 
noprecipitation data indicate that Cselp is 
not a coInponent of the APC. 

The subcellular localization of the APC 
components was deterlnined by indirect im- 
m~mofluorescence (26). Cdcl6-b1yc6p, 
Cdc23-blyc9p, Cdc26-kIyc9p, Cdc27-Myc9p, 
and Apcl-blycl8p are all localized in the 
nucleus [Fig. 4 and (18)]. Csel-A4yc9p has 
also been sho~vn to be a inlclear protein (27). 
W e  did not detect specific accumulation of 
ally of these proteins at spindle pole bodies or 
on mitotic spindles. 

T o  investigate the role of APCl in vivo, 
we isolated small, unbudded G I  cells from 
n.ild-type and apcl-1 cultures grown at 25°C 
and follo~ved their progression through the 
cell cycle upon incubation at 37°C (28). In 
npcl-I cells, DNA replication, buclding, and 
the formation of mitotic spindles occurred at 
the same time as in wild-type cells, but entry 
into anaphase was delayed by about 29 Inin 
(Fig. 5, A and B). Most apcl-l cells later 
underlvent anaphase but were slo\v in disas- 
seillbling their initotic spindles. They eventu- 
ally rebudded without ~~ndergoing cytokinesis 
or re-replication. We conclude that apcl-1 
cells are defective in the onset of anaphase, in 
the final exit from mitosis, and 111 the com- 
pletion of cytokinesis. In the apcl-I mutant, 
Clb2 protein and Clb2p-associated histone 

, , 
H1 kinase actlvlty appeared later than in 
\vild-type cells. This f ind~ng could explain 
nhy  entry into anaphase is delayed in the 
mutant. Neither Clb2 protein nor ClbZp- 
Cdc28p ltinase activity declined as m ~ ~ t a n t  
cells undern.ent anaphase (Fig. 5C) .  The  ob- 
servation that apcl-l cells rebud without any 
apparent decrease in kinase activity is surpris- 
ing because high Clbp-Cdc28p ltinase activ- 
ity is thought to inhibit rebudding (3).  

T o  detect Clb2p in individual cells by 
indirect iin~nuilotluorescence microscopy (26),  
n e  replaced the endogenous CLB2 genes of a 
n.ild-type and an  apcl-l strain by the epitope- 
tagged variant CLB2-mycl2 (23). GI  cells, 
obtained by growth to stationary phase at 
2 j °C ,  were inoculated into fresh medium at 
3 i °C ,  causing cells to reenter the cell cycle. 
In wild-type cells, Clb2-Lfyc12p accumulated 
in maximal alnounts at the onset of anaphase 
and then declined rapidly as cells underwent 
nuclear division. In the apcl-1 mutant, the 
ainount of Clb2-Myc12p remained high in 
cells containing separated chrolnosoines and 
fillly elongated spindles (Fig. 5D). W e  con- 
clude that Apclp is req~lired for cyclin pro- 
teolysis not only in G, but also in late an- 

aphase-telophase. Surprisingly, apcl -1 cells 
were defective in the formatio~l of astral mi- 18. 

19. 
crotubules emanating from the poles of mi- 20, 
totic spindles (Fig. iD). In contrast, cdcl6- 
123 cells arrested at 37°C had normal astral 21. 

~nicrot~~bules  (1 8) .  22. 

T h e  acc~~inulat ion of Cdc26p at high 
temperature is consistent with the observa- 23. 
tion that Cdc26p f~rnction is only essential 
for A P C  activity at 37°C. Cdc26p may he 
required to stabilize the A P C  or to modulate 
its activity uncler conditions of stress, such as 
heat shock. T h e  finding that the BIklEp 
homologs of yeast (Apc lp )  and frog (29) are 
subunits of the A P C  explains the pre-an- 
arhase arrest of bimE mutants. Loss of bimE 24. 

f~lnction partially bypasses the control mech- 
anisrns that render entry into mitosis depen- 
dent o n  the completion of D Y A  replication 
and on the activat~on of the S I M A  kinase 
(3C). Taken together, these data indicate 
that the A P C  is not only required for the 
onset of anaphase and the exit from lnitosis 
but may also participate in regulating entry 
into mitosis. 
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