the nimA gene normally arrest in S and G,
phase, respectively, but enter mitosis if bimE
has been mutated (18). It is presently unclear
why mutation of an APC subunit would cause
this phenotype. One possibility is that mitotic
cyclins accumulate in abnormal amounts in
bimE mutants, resulting in premature en-
trance into mitosis. Alternatively, APC may
negatively regulate other activators of mitosis
such as NIMA (21). Others have proposed
that APC may also regulate exit from S phase
(22). Because APC is composed of eight sub-
units, it is conceivable that APC ubiquiti-
nates multiple proteins that regulate cell-cycle
progression.
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Identification of Subunits of the
Anaphase-Promoting Complex of
Saccharomyces cerevisiae

Wolfgang Zachariae,” Tae Ho Shin,*{ Marta Galova,
Brigitte Obermaier, Kim Nasmyth:

Entry into anaphase and proteolysis of B-type cyclins depend on a complex containing
the tetratricopeptide repeat proteins Cdc16p, Cdc23p, and Cdc27p. This particle, called
the anaphase-promoting complex (APC) or cyclosome, functions as a cell cycle-regu-
lated ubiquitin-protein ligase. Two additional subunits of the budding yeast APC were
identified: The largest subunit, encoded by the APC1 gene, is conserved between fungi
and vertebrates and shows similarity to BIMEp from Aspergillus nidulans. A small heat-
inducible subunit is encoded by the CDC26 gene. The yeast APC is a 36S particle that

contains at least seven different proteins.

Mitoric cyclin degradation is required for the
final exit from mitosis (I, 2) and is a prereq-
uisite for S phase in the subsequent cell cycle
(3). In extracts from Xenopus eggs, degrada-
tion of cyclin B depends on a particle called
the APC, which contains at least eight differ-
ent proteins. The APC and the cyclosome, a
particle found in clam oocytes, function as
cell cycle—regulated ubiquitin-protein ligases
that mediate destruction box—dependent
ubiquitination (4, 5) and thereby target cyc-
lins for proteolysis by the proteasome (6). The
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isolation of mutants defective in cyclin deg-
radation led to the identification of the tetra-
tricopeptide repeat proteins Cdc16p, Cdc23p,
and Cdc27p as subunits of the APC (4, 7, 8).
These proteins are required for the onset of
anaphase in various organisms (9, 10). Be-
cause cyclin proteolysis per se is not required
for anaphase (2, 11), it has been suggested
that the APC also targets for destruction pro-
teins whose degradation is necessary for sister
chromatid separation (7, 12).

Mitotic cyclins such as Clb2p are rapidly
degraded in G,-arrested yeast cells (7, 13). To
isolate mutants defective in cyclin proteolysis,
we screened mutagenized colonies for 3-galac-
tosidase activity resulting from the accumula-
tion of a Clb2-lacZ protein in G, at 37°C as
described (7). We identified 18 mutants that
arrested as large, budded cells with a 2C DNA
content after cycling cultures were shifted
from 25° to 37°C (14). Complementation
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Fig. 1. Defective proteolysis and ubiquitination of mitotic cyclins in the cdc26-579 and apc7-1 mutants.
(A) Accumulation of Clb2p in G,-arrested apc1-1 cells. Wild-type (K5137) and apc1-1 cells (K6221) of
the genotype MATa GALp-CLB2-HA3 bar1 were arrested in G, with a-factor in raffinose medium at
23°C. Cells were transferred to raffinose-galactose medium containing a-factor at 35°C. Samples for
immunoblotting and analysis of cellular DNA content were withdrawn at the indicated time points. (B)
Ubiquitin-conjugating activity in extracts from a wild-type (K5518) (WT) and two ¢cdc26-519 strains
(K6200 and YWZ135). Strains (MATa pep4 bar1) were arrested in G, with a-factor at 25°C and shifted
to 37°C for 90 min. Extracts were incubated for 5 min with an adenosine triphosphate-regenerating
system and the indicated HA3-tagged cyclin substrate as described (8). Clb2ADBp lacks the destruc-
tion box (2). Cyclin-ubiquitin conjugates were detected by immunoblotting with an antibody to HA. (C)
Cyclin ubiquitination in extracts from G, -arrested wild-type (K1771) and apc1-1 cells (K6199). Strains
were arrested with a-factor at 23°C and shifted to 37°C for 40 min. Molecular sizes are indicated on the
left (in kilodaltons).
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Fig. 2. Coimmmunoprecipitation of Apc1p and Cdc26p with other subunits of the APC. (A) Association
of Cdc26p and Apc1p with Cdc16p, and self-association of Apc1p. Extracts were prepared from strains
expressing Myc- and HA-tagged proteins as indicated and subjected to immunoprecipitations with the
antibody to HA (24). Epitope-tagged proteins in the extracts and the immunoprecipitates (Anti-HA IP)
were detected by immunoblotting with the antibodies 12CA5 (Anti-HA) or 9E10 (Anti-Myc). (B) Subunits
of the yeast APC. Cells of several strains, each expressing a different Myc-tagged protein, were labeled
with 35S-methionine and 3%S-cysteine. Extracts were prepared and subjected to immunoprecipitations
with the antibody 9E10 (anti-Myc) (24). Bound proteins were detected by fluorography. A protein whose
precipitation does not depend on the Myc epitope tag is marked with an asterisk.

Fig. 3. Cosedimentation A
of Apcip, Cdc16p, and
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analysis and gene cloning demonstrated that
we had isolated seven mutant alleles of CSE1,
four of CDC16, one of CDC26 (cdc26-519),
and a mutant allele of a gene that we called
APCI1 (15). csel and cdcl6 mutants have
been identified previously in a similar screen
(7). The CDC26 gene encodes an acidic pro-
tein of 17 kD (16).

Induction of a GAL promoter—-CLB2-
HA3 fusion in G-arrested cells at 35°C
resulted in the accumulation of Clb2-
HA3p within 20 min in the apcl-1 mutant
but not in wild-type cells. Mutant cells
initiated S phase after 60 min but failed to
bud, whereas wild-type cells stayed arrest-
ed (Fig. 1A). A similar phenotype is
caused by expression of a nondestructible
form of Clb2p in wild-type cells (13). Ex-
tracts prepared from G, -arrested cdc26-519
and apcl-1 mutants were defective in ubig-
uitination of the mitotic cyclins Clb2p and
Clb3p (Fig. 1, B and C), suggesting that
reduced Clb2p proteolysis in the mutants
stems from defective ubiquitination.

At 37°C, cdc26-519 mutants arrested as
large, budded cells containing a short mi-
totic spindle in an undivided nucleus posi-
tioned at the bud neck. Haploid cells lack-
ing the entire CDC26-coding sequence
were viable at 25°C but arrested with a
similar phenotye at 37°C (17). This result
confirms that CDC26 is only essential "at
increased temperatures (16). Epitope tag-
ging revealed that the amount of Cdc26p
increased 10-fold when cells grown at 25°C
were shifted to 37°C. In contrast, the
amount of Cdc16p did not increase (18).

The APCI wild-type gene (15) encodes
a 1748-amino acid (192-kD) protein whose
COOQOH-terminal half is similar to the BIME
protein from Aspergillus nidulans (19) and to
a related protein encoded by the mouse
tsg24 gene (20). An alignment of amino
acids 904 to 1713 of Apclp shows 28 and
25% identity to the corresponding regions
of BIMEp (amino acids 1217 to 1939) and
Tsg24p (amino acids 1026 to 1777), respec-
tively (21). Tetrad analysis of spores derived
from a diploid in which one copy of APCI

195 40,65 Bottom

o g
Cdec26p as a 365 parti- 8234567801 1112131415 161711 Fracton FA2 S48 6T SINITRBUERT ARG Frechon
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separatedina 10 to 35% b= ol Apc1-HA3 - owwee———— Cse1-Myc9
glycerol gradient, and
fractions were analyzed s - i Cdc16-Myc6 ¥ R i o Cdc16-HA3
by immunaoblotting (25). 1
Cim5p, a subunit of the B8 7 o Cim5 B e Cdc26-Myco
198 proteasome-activa-
tor complex, and fatty
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acid synthetase (FAS, 40.6S) were detected with polyclonal rabbit antisera. (B) Extracts from
CDC16-HA3 CSE1-myc9 (K6184) and CDC16-HA3 CDC26-myc9 (K6323) strains were
separated on parallel gradients as described in (A).
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was replaced by HIS3 showed that APCI is
an essential gene (22). His™ spores arrested
as large, budded cells after one or two cell
divisions after germination.

Cdcl6p, Cdc23p, and Cdc27p associate
with each other in yeast (10). Cyclin prote-
olysis in vivo and cyclin ubiquitination in
vitro also depends on the Csel protein (7, 8).

Fig. 4. Nuclear localization of sub-
units of the yeast APC. Control cells
(No Myc, K1534) and cells contain-
ing CDC16-myc6 (K6180), CDC26-
myc9 (K6322), or APC1-myc18
(K6329) were fixed, and Myc-
tagged proteins were detected by
indirect immunofiuorescence (26).
DNA was stained with 4',6'-dia-
midino-2-phenylindole (DAPI).

No Myc

CDC16-
mycé

To investigate whether Cdc26p, Apclp, and
Cselp associate with the Cdcl6p-Cdc23p-
Cdc27p complex, we modified the endoge-
nous genes to encode variants carrying
COQOH-terminal hemagglutinin (HA) or
Myc epitope tags (23). All of these variants
were fully functional. Extracts were prepared
from strains expressing two proteins with dif-

DAPI

Anti-Myc

ferent epitope tags and subjected to immuno-
precipitations with the antibody to HA (24)
(Fig. 2A). Cdc16-Myc6p was coprecipitated
with Apcl-HA3p but not with Csel-HA3p.
Cdc26-Myc9p was coprecipitated . with
Cdcl16-HA3p. Apcl-Mycbp was coprecipi-
tated with Apcl-HA3p from an extract pre-
pared from an APCI-HA3/APCIl-myc6 dip-
loid strain. To characterize the complex fur-
ther, we labeled various strains, each express-
ing a different Myc-tagged protein, with 3°S-
methionine and 3°S-cysteine (24) (Fig. 2B).
The antibody to the Myc epitope precipitated
the same set of proteins from extracts of
CDC16-myc6, CDC23-myc9, CDC26-myc9,
CDC27-myc9, and APCl-mycl8 cells. This
set included Cdc16p, Cdc23p, Cdc27p, and
Apclp, which were identified by the in-
creased molecular size of epitope-tagged vari-
ants, and a protein of 80 kD. A protein with
a size close to that of Cdc16p (100 kD) was
detected in the immunoprecipitate from the
CDC16-myc6 strain. None of these proteins
was coprecipitated with Csel-Myc9p. These

CDC26- data, together with previous work (8, 10),
mycd suggest that cyclin ubiquitination in yeast de-
pends on a complex containing at least two
molecules each of Apclp, Cdcl6ép, Cdc23p,
and Cdc27p. Cdc26p and at least two uniden-
tified proteins (p80 and p100) are also com-

ﬁqig,g ponents of this complex.

To determine the size of the yeast APC,
we analyzed extracts from strains expressing
two epitope-tagged proteins by glycerol den-

Fig. 5. Defective an- A Wild type c Wild type P 3000+ o
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released into fresh medi-
um at 37°C, and samples
were withdrawn at the in-
dicated time points (28). B
(A) Percentage of budded
cells (O), of cells contain-
ing a short spindle in an
undivided nucleus (O), and
of cells with separated
chromosomes and an
elongated spindle (late an-
aphase-telophase) (@). (B)
Distribution of the DNA
content. (C) Clb2 protein
and Clb2p-associated ki-

Wild type

nase activity. A clb2 deletion strain (K1890) was used for negative controls, and Swip
was detected as a loading control. (D) Defective Clb2p destruction and lack of astral
microtubules in apc1-1 cells. A wild-type (K6208) and an apc -1 (K6131) strain, both
containing CLB2-myc12, were grown on plates at 25°C to obtain unbudded G, cells.
Strains were inoculated into liquid medium at 37°C,
Tubulin (green) and Clb2-Myc12p (red) were detected by indirect immunofluores-
cence (26), and DNA was stained with DAPI (blug).
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sity gradient centrifugation (25). Apcl-
HA3p and Cdc23-HA3p cosedimented with
Cdc16-Mycbhp as a 36S particle [Fig. 3A and
(18)]. This size is larger than that reported for
the Xenopus APC (20S) (4) and the cyclo-
some from clam (5). Cdc26-Myc9p but not
Csel-Myc9p  cosedimented with Cdcl6-
HA3p (Fig 3B). These results and the immu-
noprecipitation data indicate that Cselp is
not a component of the APC.

The subcellular localization of the APC
components was determined by indirect im-
munofluorescence  (26).  Cdc16-Myc6p,
Cdc23-Myc9p, Cdc26-Myc9p, Cdc27-Myc9p,
and Apcl-Mycl8p are all localized in the
nucleus [Fig. 4 and (18)]. Csel-Myc9p has
also been shown to be a nuclear protein (27).
We did not detect specific accumulation of
any of these proteins at spindle pole bodies or
on mitotic spindles.

To investigate the role of APCI in vivo,
we isolated small, unbudded G, cells from
wild-type and apcl-1 cultures grown at 25°C
and followed their progression through the
cell cycle upon incubation at 37°C (28). In
apcl-1 cells, DNA replication, budding, and
the formation of mitotic spindles occurred at
the same time as in wild-type cells, but entry
into anaphase was delayed by about 20 min
(Fig. 5, A and B). Most apcl-1 cells later
underwent anaphase but were slow in disas-
sembling their mitotic spindles. They eventu-
ally rebudded without undergoing cytokinesis
or re-replication. We conclude that apcl-I
cells are defective in the onset of anaphase, in
the final exit from mitosis, and in the com-
pletion of cytokinesis. In the apcl-1 mutant,
CIb2 protein and Clb2p-associated histone
H1 kinase activity appeared later than in
wild-type cells. This finding could explain
why entry into anaphase is delayed in the
mutant. Neither Clb2 protein nor Clb2p-
Cdc28p kinase activity declined as mutant
cells underwent anaphase (Fig. 5C). The ob-
servation that apcl-1 cells rebud without any
apparent decrease in kinase activity is surpris-
ing because high Clbp-Cdc28p kinase activ-
ity is thought to inhibit rebudding (3).

To detect Clb2p in individual cells by
indirect immunofluorescence microscopy (26),
we replaced the endogenous CLB2 genes of a
wild-type and an apcl-1 strain by the epitope-
tagged variant CLB2-mycl2 (23). G, cells,
obtained by growth to stationary phase at
25°C, were inoculated into fresh medium at
37°C, causing cells to reenter the cell cycle.
In wild-type cells, Clb2-Myc12p accumulated
in maximal amounts at the onset of anaphase
and then declined rapidly as cells underwent
nuclear division. In the apcl-I mutant, the
amount of Clb2-Mycl2p remained high in
cells containing separated chromosomes and
fully elongated spindles (Fig. 5D). We con-
clude that Apclp is required for cyclin pro-
teolysis not only in Gy but also in late an-
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aphase-telophase. Surprisingly, apcl-1 cells
were defective in the formation of astral mi-
crotubules emanating from the poles of mi-
totic spindles (Fig. 5D). In contrast, cdcl6-
123 cells arrested at 37°C had normal astral
microtubules (18).

The accumulation of Cdc26p at high
temperature is consistent with the observa-
tion that Cdc26p function is only essential
for APC activity at 37°C. Cdc26p may be
required to stabilize the APC or to modulate
its activity under conditions of stress, such as
heat shock. The finding that the BIMEp
homologs of yeast (Apclp) and frog (29) are
subunits of the APC explains the pre-an-
aphase arrest of bimE mutants. Loss of bimE
function partially bypasses the control mech-
anisms that render entry into mitosis depen-
dent on the completion of DNA replication
and on the activation of the NIMA kinase
(30). Taken together, these data indicate
that the APC is not only required for the
onset of anaphase and the exit from mitosis
but may also participate in regulating entry
into mitosis.
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