
These results demonstrate that redox 
chemical diffusion experiments do not a 
priori allow characterization of the diffusion 
coefficient of an oxygen species in a Fe-
bearing aluminosilicate melt. Differences in 
values of diffusion coefficients extracted 
from a redox experiment and an oxygen 
tracer diffusion experiment on the same 
melt composition would therefore reflect 
that the two procedures are measuring dif­
ferent things. Our experiments additionally 
demonstrate that the cation-diffusion re­
sponse to a redox driving force allows for 
relatively rapid chemical segregation in a 
melt; the mechanism should perhaps be 
considered as contributing to the concen­
tric segregation microstructures frequently 
described for primitive chondrules (23). 
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40Ar-39Ar single-crystal laser-probe analysis 
to date suitable material as young as 12.5 
thousand years ago (ka) with approximately 
5% precision (3). However that study did 
not rule out the possible presence of excess 
radiogenic 40Ar (4) at a uniform concentra­
tion in the sanidine crystals, corresponding 
to a quantum of erroneous excess age, be­
cause no independent measurement of the 
eruptive age was available. We have there­
fore analyzed sanidine crystals from three 
tephra layers, also in the Mono Craters area, 
for which 14C age control exists. 

The Mono Craters, a string of volcanic 
domes, flows, and explosion craters in cen­
tral California, erupted episodically in the 
late Quaternary, depositing layers of ash in 
adjacent Mono Lake and in nearby mead­
ows. We analyzed two ash layers (WCA-8 
and WCA-15) in the late Pleistocene Wil­
son Creek Formation (WCF), a lacustrine 
silt deposited during the last deep-water 
phase of Mono Lake (5). We also dated an 
ash layer (CMA-13) in a sequence of Ho-
locene peat deposits in Crooked Meadow, 
directly southeast of Mono basin (6). Inter-

The Edge of Time: Dating Young Volcanic Ash 
Layers with the 40Ar-39Ar Laser Probe 

Yanshao Chen, Patrick E. Smith, Norman M. Evensen, 
Derek York, Kenneth R. Lajoie 

Argon-40-argon-39 single-crystal dating of young (5000 to 30,000 years ago) volcanic 
ash layers erupted from the Mono Craters, California, shows that the method can yield 
meaningful ages in Holocene tephra. Because of ubiquitous xenocrystic contamination, 
the data do not form isochrons but plot in wedge-shaped regions on an argon isotopic 
diagram. The upper boundary of the region is an isochron matching the 14C-derived age 
of the eruption. Such contamination-related patterns may be common in dating young 
materials by the single-crystal method. Argon dating by this method can help refine the 
time scale of physical and biological evolution over the past 100,000 years. 
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polation between I4C-dated horizons in the 
sections. together with correction from 14C . L. 

years to calendar years, yields estimates of 
4.6 2 0.1, 25.0 5 1.0 and 30.8 2 0.9 ka for 
samples CMA-13, WCA-15 and WCA-8, 
respectively (7). 

Analyses of 42 sanidine crystals from ash 
layer WCA-15 (8 ) ,  instead of lying along an 
isochron line on the areon isoto~e correla- - 
tion diagram (9), define a wedge-shaped area 
(Fig. l ) ,  with only one sample plotting out- 
side it. In Fig. 1, both the upper, younger 
boundary and the lower, older boundary of 
the wedge are isochrons constrained to pass 
through the modem atmospheric value 
(36Ar/40Ar = 11295.5) and having slopes 
determined from the data points (10). Such 
a wedge is therefore a wedge of time, which 
we term a "sphenochron" (from the Greek 
word u+qv, a wedge). The upper edge of this 
time wedge, characterizing the youngest ma- 
terial found in the sample, represents the 
time of eruption, and agrees well with the 
age of the sample inferred from the calibrat- 
ed I4C data. Most of the cwstals. which  lot 
significantly below the upper bounda6 of 
the wedge, must either be older than the 
eruption of the ash, or must appear older as a 
result of excess 40Ar incorporated at their 
formation. 

Although excess argon is potentially a 
serious problem in dating igneous materials 
(1 Z), sanidine has long been considered es- 
sentially free from excess (2). In these young 
samples, however, even a small excess would 
significantly affect the apparent age. A rhy- 
olitic magma chamber, such as that which 
produced the Mono Craters, is likely to be a 
reservoir of excess 40Ar. both that derived 
from crustal rocks incorporated into the 
magma, and that produced in situ during the 
lifetime of the magma chamber (13). How- 
ever, the varying incorporation of excess ar- 
gon into sanidine phenocrysts should result 
in dispersion along an isochron with the 
correct age and an initial 40Ar/36Ar ratio 
higher than that of atmosphere. The sphe- 
nochron represents nearly the opposite situ- 
ation: a dispersion in ages with no evidence 
for a nonatmospheric initial ratio. 

We therefore regard the other possibility, 
that many of the sanidine crystals are older 
than the eruption event, as more likely. Such 
older crystals could result from closure of the 
argon system in phenocrysts formed before 
eruption or from the incorporation of xeno- 
crysts from earlier eruptive events. Diffusion 
calculations suggest that sanidine pheno- 
crysts in a silicic magma chamber should 
retain argon for at most days or weeks, and 
certainly not for thousands of years (15). We 
therefore favor a xenocrystic origin of the 
sanidine crystals that plot significantly below 
the upper boundary of the s~henochron. Xe- 
nocrysts defining the lower boundary of the 

s~henochron may provide a minimum age 
for the earliest eruption from the correspond- 
ing vent. 

Evidence supporting this interpretation is 
shown by replotting single-crystal 40Ar-3yAr 
data for anorthoclase crystals from the Hiit- 
tenberg tephra layer of the East Eifel Volcanic 
Field of Germany (1 6). There the actual erup- 
tion age of 2 15 ka was determined from crys- 
tals in the most mafic lapilli, which yielded a 
well-defined isochron. Crystals from more dif- 
ferentiated samples, when rescaled (Fig. I), 
form a wedge-shaped area similar to the one 
seen in the Mono Craters t e~hra  data; the 
215-ka eruption age isochron forms the upper 
boundary of this wedge. 

Twenty-eight sanidine crystals from ash 
layer WCA-8 and 23 from CMA-13 display 
a similar pattern, although the fewer samples 
provide a sparser image of the sphenochrons 
(Fig. 2). As above, the upper boundaries of 
the s~henochrons agree to 2u with the ages 
inferred from the calibrated I4C data. The 
lower boundary of the WCA-8 sphenochron 
(with the exception of the 710 ka outlier 
noted above) is similar to that of WCA-15 
and significantly older than the bottom of 
the sphenochron for CMA-13. 

Ash layers WCA-8 and WCA-15 each 
contain one sanidine crystal with a signifi- 
cantly greater age than the remainder. 
Their apparent ages of 710 and 498 ka 

Fig. 1. 36Ar/40Ar versus 39Ar/40Ar 3 9 ~ r P 0 ~ r  
correlation diagram for sanidine 
crystals from ash layer WCA-15 0.0 0.5 1.0 1.5 2.0 2.5 3.0 

(filled ellipses), and for comparison, 
0 . m  

earlier analytical results (16) from WCA-15 - Atmos 
the differentiated Huttenberg teph- 
ra (H tephra) of the East Eifel vol- 
canic field, Germany (open el- 
lipses) All ellipses show 1 o analyti- ,$ 
cal errors. Shaded areas are "sphe- 2 0.002 a nochrons," bounded by isochrons g 
passing through the 36Ar/40Ar ratio 
of modern atmosphere (=1/295.5). 0.001 
The bounding isochrons for WCA- 
15 are determined by statistical -L.-- 60.3+1.2 ko 
analysis of the argon data (lo), with 
the inferred, corrected 14C age of 0.000 I """ 

the tephra (7) shown as a dashed 
lo00 500 200 1009080 70 

line for comparison. The upper Age (ka) 

bound for the H tephra is defined by 
a 215-ka isochron obtained from anorthoclase crystals from the most mafic lapilli (16). See text for 
further discussion. Note that one small filled ellipse from the WCA-15 ash is within the H tephra region. 
All data have been normalized to a J value of 1.076 x 1 0-4, and the corresponding age scale plotted at 
the bottom. The integrated age for all WCA-15 data is 38.8 + 1.1 ka, and is equivalent to the age that 
would be obtained from a bulk analysis of all the analyzed crystals. 

Atmos 
0.003 

Fig. 2. 36Ar/40Ar versus 39Ar/40Ar correlation diagrams for sanidine crystals from ash layers WCA-8 (A), 
and CMA-13 (B). The ellipses show l o  analytical errors, except the two concentric open ellipses 
indicated by the small arrow in (B), which for clarity show 2u errors. Shaded areas are sphenochrons, 
bounded by isochrons determined from the argon data, but constrained to pass through the 36Ar/40Ar 
ratio of modem atmosphere (=1/295.5) (10). For both samples the inferred, corrected 14C ages of the 
corresponding tephras (7) are shown as dashed lines for comparison. All data have been normalized to 
a J value of 1.076 x 1 0-4, and the corresponding age scale is plotted at the bottom. The integrated age 
for WCA-8 data is 44.0 2 1.2 ka and for CMA-13 is 13.6 + 0.9 ka. 
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and 9 Becker, %,3!oca:boii 35, 1 11993:; B K,-omer 
and B. Seeker, ibd. p 1251. Therefore, for ash layer 
CivlA-13, tne estmated t r e  of ts  erupton fdepcstion) 
IS i . 6  i C.l ka. 
Ash la!~ers ?VCA-8 and ?VCA-15 are frcm t,ie so~lt.1 
shore secton of the 1VCF dc\.~nwind fro~n Mono Cra- 
ters, w.1 cli has t.icker and coarser as,? la!~ers than tlie 
dated type secton at \!'.?son Creek. Hand-pckng cf 1 - 
to 2 -m~n  san dne c-ystals n wlich we a\!oided cr.stas 
of ncn\!ocanc orgn, yeldecl rncstly clear cystals, with 
'!ar.ng amounts cf adher ng glass ~?!hcli \?!as rerroved 
b!~ caref~~ll!y breakng t loose. A cystals, together with 
f l ~ ~ x  l n c i  tcrs of F~sh Canyon Tuff sanidne (assumed 
age = 27.E; m o n  years ago), \.!ere r~adated in Cd- 
slieded capsules for 30 m , i  (1 Ml?'h~ n poston 5C of 
the blcblaster Uucear Peactol-, Ham ton, antaro, and 
analyzed for Ar isotope ratios in the Jn\!ersty of Toronto 
Geochronolog!~ Labcratorj (31, soc~iron calculat~cns 
are baseu on the algc'itii~n c i  0 Yak [Eaty:l? plaret SCL 
Lett 5 323 (1 969)]. A ilncetaint es are g\!en at 1 n 
a n  a diagram cf ?'Ar, ?Ar versus "%r,-'Ar, 
st:agnt Ihnes of negatve slope def ne sys tem cf 
f xed age (g  \!en by ihe '%r':,'Av ir-tercept) varaby 
T xed >:,th c o n t a ~ r a n t  avgon of fxed c o ~ p o s  t or- 
(g'\!en by the 3'A,,J' Ar ~ i te rcept  = 1 295.5 for 
  nod ern a t ~ o s p h e r e .  
Oar rnethocl explores all possible subd~v~siors o i  ttie 
sphenochror inio smaller xedges for e a r  sub- 
".,due, c o ~ ~ p u t n g  the l,11S1'!'D of the covres:,or-ding 
socti~or- constra ned to pass tIi,ough modern atmo- 
sphere ( 7  7 )  It ther' chooses tliat S L I ~ C ~ I ? ' I S O ~  v ~ t h  the 
smallest number of sub-,,.,edges for l'!,i~c,i the 
MSV:'D of each sub-v~eclge IS less than 1 and ttie 
total Iv"S1'VD s a rnlr m u n  
Tlie niear- s q a r e  ?.,e~gtited &!ate, or k4SV:'D IS S, 
tlie sLlni of tlie squares of the v:eghted dev at ors  
f rov  the best f ~ t  ~soc l?~on,  cl v cied by the deqees of 
fveecloni, 8;-2, >v:lieve *i IS the numbel of data po nts 
Its expected \!al~~e IS - .  
P E Damon. A V:' La~lghln. J K Perc~ous, n Pa- 
o>cac?r~.,e Dat11;g a112 ~'!::eri;o.'s c f  io~/.~-Le'/ei Coi i i~t-  
(bg nternat e r a  Atomc Enevgy Agency. \iienna. 

967), pl3 i63-481 
Acco,d~ng to recent s t~ ldes  on the rearby 6 shop 
Tuff [A U H a  day er a1 , Eari'l Pia:;er Sci, ier: 94, 
27; (1993. i i4)] .  that magma ctiarnber could ,ia'!e 
beer in existerce for m0.e than 1 v I ~ c n  yeaFs. 
P v, d. Bcgaard ar-d C Scti~rn~clc. Geolcgy 23. 753 
1 395" 
1Js1ng itie d~ffuson constanis measL~red by P. Zeter 
[C1;en;. Geo' 65, - 67  i1387;: for s a r d n e  frcm tlie 
Fsh Canyon Tuff, and an est ~nated naglna tellper- 
at l~re cf 750-C, v!e ca l c~~~a te  that a 1 n m  crysta: 
?',auld lose 90'0 of ~ t s  argor n 8 5 da!js 01 93.39"0 n 
i l cla!js. A 25-C cl ia lge r -  tellperahre ?vould 
ci-ange ihese t~ines by about a facior of t,?!o. Abcut 
12 iicurs i r  a 753°C magma ?.,culd came enough 
argon loss to cliange the apparer-t age cf a 763 ka 
Bshop Tufl san t i r e  to 530 Ita. 
P \! d. Bogaard. C b.4 hall, h . -U  Schm rcke, D. 
York. ;,,!ature 342 523 113831 
The splheroch,on appears cny viliere the range of xe- 
nocyst ages IS arge cornpaled 1?!1th the sample age. 
Tlie absol~~te spread r -  ages represer-ted b!~ the sphe- 
noclirors shown there would vrt-ally d sapl;ear nto t,ie 
a?al:~~cal error I? analyz~?g a sample of a I - -or -  years or 
more r- age. Sphenochrons are tlierefcre Inore I key to 
a:,pear n the datng of young rnateral 
K e  thank R C. \?:alter for d s c ~ ~ s s  o rs  and sugges- 
tons anti iv1 Larphere, A isJ. Sarna-l'!'ojcick and 
t v ~ o  anon!ynous wvlev~ers for construct ve c o w  
lnents Supported by tile Un \!ers ty of Toror-to Con- 
naught Fund ard  the kat~lral  Seer-ces ar-d Engl- 
neer r-g Pesearc,? Counc of Canada Y.C '!:as SLIP- 
ported I;!I a Yat'ona Reseavch C ~ L I I - c  cf Canada 
"ostdocto~al Feov:sti p.  
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