These results demonstrate that redox
chemical diffusion experiments do not a
priori allow characterization of the diffusion
coefficient of an oxygen species in a Fe-
bearing aluminosilicate melt. Differences in
values of diffusion coefficients extracted
from a redox experiment and an oxygen
tracer diffusion experiment on the same
melt composition would therefore reflect
that the two procedures are measuring dif-
ferent things. Our experiments additionally
demonstrate that the cation-diffusion re-
sponse to a redox driving force allows for
relatively rapid chemical segregation in a
melt; the mechanism should perhaps be
considered as contributing to the concen-
tric segregation microstructures frequently
described for primitive chondrules (23).
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The Edge of Time: Dating Young Volcanic Ash
Layers with the “°Ar-3°Ar Laser Probe

Yanshao Chen, Patrick E. Smith, Norman M. Evensen,
Derek York, Kenneth R. Lajoie

Argon-40-argon-39 single-crystal dating of young (5000 to 30,000 years ago) volcanic
ash layers erupted from the Mono Craters, California, shows that the method can yield
meaningful ages in Holocene tephra. Because of ubiquitous xenocrystic contamination,
the data do not form isochrons but plot in wedge-shaped regions on an argon isotopic
diagram. The upper boundary of the region is an isochron matching the "*C-derived age
of the eruption. Such contamination-related patterns may be common in dating young
materials by the single-crystal method. Argon dating by this method can help refine the
time scale of physical and biological evolution over the past 100,000 years.

Nature has endowed the potassium-argon
geochronometer with great power. The 1.3-
billion-year half-life of the parent, “°K, al-
lows the geochronometer to be used to date
events back to the creation of the solar
system, while the efficiency with which
minerals typically exclude ambient argon at
their formation makes it a sensitive tool for
dating the recent past. The %°Ar-*°Ar
method of reading the K-Ar clock and the
laser step-heating procedure for the analysis
of single grains add to its versatility and
resolution (I). Argon dating of the last
100,000 years, while technically difficult,
can complement #C and other dating
tools, and could be invaluable in resolving
uncertainties and ambiguities in other
methods.

Dating of sanidine crystals separated from
rthyolitic lavas from the Mono Craters, Cal-
ifornia, demonstrated the feasibility of using
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A H9Ar single-crystal laser-probe analysis
to date suitable material as young as 12.5
thousand years ago (ka) with approximately
5% precision (3). However that study did
not rule out the possible presence of excess
radiogenic *°Ar (4) at a uniform concentra-
tion in the sanidine crystals, corresponding
to a quantum of erroneous excess age, be-
cause no independent measurement of the
eruptive age was available. We have there-
fore analyzed sanidine crystals from three
tephra layers, also in the Mono Craters area,
for which *C age control exists.

The Mono Craters, a string of volcanic
domes, flows, and explosion craters in cen-
tral California, erupted episodically in the
late Quaternary, depositing layers of ash in
adjacent Mono Lake and in nearby mead-
ows. We analyzed two ash layers (WCA-8
and WCA-15) in the late Pleistocene Wil-
son Creek Formation (WCF), a lacustrine
silt deposited during the last deep-water
phase of Mono Lake (5). We also dated an
ash layer (CMA-13) in a sequence of Ho-
locene peat deposits in Crooked Meadow,
directly southeast of Mono basin (6). Inter-



polation between '*C-dated horizons in the
sections, together with correction from *C
years to calendar years, yields estimates of
4.6 = 0.1, 25.0 = 1.0 and 30.8 = 0.9 ka for
samples CMA-13, WCA-15 and WCA-8,
respectively (7).

Analyses of 42 sanidine crystals from ash
layer WCA-15 (8), instead of lying along an
isochron line on the argon isotope correla-
tion diagram (9), define a wedge-shaped area
(Fig. 1), with only one sample plotting out-
side it. In Fig. 1, both the upper, younger
boundary and the lower, older boundary of
the wedge are isochrons constrained to pass
through the modern atmospheric value
(C°Ar/*Ar = 1/295.5) and having slopes
determined from the data points (10). Such
a wedge is therefore a wedge of time, which
we term a “sphenochron” (from the Greek
word admy, a wedge). The upper edge of this
time wedge, characterizing the youngest ma-
terial found in the sample, represents the
time of eruption, and agrees well with the
age of the sample inferred from the calibrat-
ed '“C data. Most of the crystals, which plot
significantly below the upper boundary of
the wedge, must either be older than the
eruption of the ash, or must appear older as a
result of excess *°Ar incorporated at their
formation.

Although excess argon is potentially a
serious problem in dating igneous materials
(12), sanidine has long been considered es-
sentially free from excess (2). In these young
samples, however, even a small excess would
significantly affect the apparent age. A rhy-
olitic magma chamber, such as that which
produced the Mono Craters, is likely to be a
reservoir of excess t°Ar, both that derived
from crustal rocks incorporated into the
magma, and that produced in situ during the
lifetime of the magma chamber (13). How-
ever, the varying incorporation of excess ar-
gon into sanidine phenocrysts should result
in dispersion along an isochron with the
correct age and an initial *°Ar/**Ar ratio
higher than that of atmosphere. The sphe-
nochron represents nearly the opposite situ-
ation: a dispersion in ages with no evidence
for a nonatmospheric initial ratio.

We therefore regard the other possibility,
that many of the sanidine crystals are older
than the eruption event, as more likely. Such
older crystals could result from closure of the
argon system in phenocrysts formed before
eruption or from the incorporation of xeno-
crysts from earlier eruptive events. Diffusion
calculations suggest that sanidine pheno-
crysts in a silicic magma chamber should
retain argon for at most days or weeks, and
certainly not for thousands of years (15). We
therefore favor a xenocrystic origin of the
sanidine crystals that plot significantly below
the upper boundary of the sphenochron. Xe-
nocrysts defining the lower boundary of the

sphenochron may provide a minimum age
for the earliest eruption from the correspond-
ing vent.

Evidence supporting this interpretation is
shown by replotting single-crystal “°Ar-*Ar
data for anorthoclase crystals from the Hiit-
tenberg tephra layer of the East Eifel Volcanic
Field of Germany (16). There the actual erup-
tion age of 215 ka was determined from crys-
tals in the most mafic lapilli, which yielded a
well-defined isochron. Crystals from more dif-
ferentiated samples, when rescaled (Fig. 1),
form a wedge-shaped area similar to the one
seen in the Mono Craters tephra data; the
215-ka eruption age isochron forms the upper
boundary of this wedge.

Fig. 1. 3Ar/*%Ar versus 3°Ar/“CAr
correlation diagram for sanidine
crystals from ash layer WCA-15
(filled ellipses), and for comparison,
earlier analytical results (76) from
the differentiated Huttenberg teph-
ra (H tephra) of the East Eifel vol-
canic field, Germany (open el-
lipses). All ellipses show 1o analyti-
cal errors. Shaded areas are “sphe-
nochrons,” bounded by isochrons
passing through the 36Ar/4CAr ratio
of modern atmosphere (=1/295.5).
The bounding isochrons for WCA-
15 are determined by statistical
analysis of the argon data (70), with
the inferred, corrected “C age of
the tephra (7) shown as a dashed
line for comparison. The upper
bound for the H tephra is defined by

36Ar/0Ar

" REPORTS

Twenty-eight sanidine crystals from ash
layer WCA-8 and 23 from CMA-13 display
a similar pattern, although the fewer samples
provide a sparser image of the sphenochrons
(Fig. 2). As above, the upper boundaries of
the sphenochrons agree to 20 with the ages
inferred from the calibrated '*C data. The
lower boundary of the WCA-8 sphenochron
(with the exception of the 710 ka outlier
noted above) is similar to that of WCA-15
and significantly older than the bottom of
the sphenochron for CMA-13.

Ash layers WCA-8 and WCA-15 each
contain one sanidine crystal with a signifi-
cantly greater age than the remainder.
Their apparent ages of 710 and 498 ka
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a 215-ka isochron obtained from anorthoclase crystals from the most mafic lapilli (76). See text for

further discussion. Note that one small filled ellipse
All data have been normalized to a J value of 1.076

from the WCA-15 ash is within the H tephra region.
x 1074, and the corresponding age scale plotted at

the bottom. The integrated age for all WCA-15 datais 38.8 + 1.1 ka, and is equivalent to the age that

would be obtained from a bulk analysis of all the a

nalyzed crystals.
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Fig. 2. 35Ar/*CAr versus 3%Ar/*CAr correlation diagrams for sanidine crystals from ash layers WCA-8 (A),
and CMA-13 (B). The ellipses show 1o analytical errors, except the two concentric open ellipses
indicated by the small arrow in (B), which for clarity show 2¢ errors. Shaded areas are sphenochrons,

bounded by isochrons determined from the argon

data, but constrained to pass through the 6Ar/40Ar

ratio of modern atmosphere (=1/295.5) (10). For both samples the inferred, corrected “C ages of the
corresponding tephras (7) are shown as dashed lines for comparison. All data have been normalized to
adJvalue of 1.076 X 104, and the corresponding age scale is plotted at the bottom. The integrated age

for WCA-8 data is 44.0 = 1.2 ka and for CMA-13
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suggest that they are partially reset sanidine
crystals from the 760 ka Bishop Tuff (14),
which immediately underlies the Mono
Craters. There is no way to distinguish a
priori whether a particular crystal was par-
tially reset (without step-heating, which is
difficult in these young samples).

Sphenochrons provide information on
the time of eruption of the particular ash
layer analyzed (the upper bounding iso-
chron). If the sphenochron contains only
eruptive xenocrysts, the lower bounding
isochron puts a lower limit on the age of
volcanism near the vent from which the ash
was erupted; this may characterize individ-
ual vents. Thus tephra layers WCA-8 and
WCA-15 may have erupted from the same
vent or from closely related vents that
opened by about 62 ka, and tephra layer
CMA-13 may have erupted from a different
vent that opened by about 22 ka.

The existence of sphenochrons has impli-
cations for the geochronology of young ash
layers, which are widely used as time markers
in climatologic, geologic and biologic studies.
If, as we propose, the true age of the ash layer
is given by the upper boundary of the sphe-
nochron, bulk K-Ar or *°Ar-*?Ar dating will
yield an integrated age for the eruption (see
captions to Figs. 1 and 2) that is too old. The
resulting error would be indistinguishable
from the effects of excess argon. The magni-
tude of such an error would depend on the
distribution of ages within the sphenochron.
Furthermore, even single-crystal dating with
insufficient statistics may be misleading. For
instance, repeated random selections of five
crystals from our data set for WCA-15 yielded
apparently good isochrons [as measured by the
MSWD (11)], but with an incorrect age about
half the time. Similar errors arising from xe-
nocrystic contamination can also exist in oth-
er isotopic dating systems, depending on the
degree to which the xenocrysts are reset in
those systems (17).

Our previous dating of sanidine pheno-
crysts from the Mono Craters (3) yielded
well-defined isochrons, and showed no sign
of a sphenochron. Those crystals were taken
from a rhyolitic flow rather than an ash
layer. Xenocrysts are more likely to be reset
in slowly cooling lavas than in rapidly cool-
ing ashfalls. It is also possible that explosive
eruptions are more prone to xenocrystic
contamination than effusive eruptions.

Our results imply that eruption ages for
highly contaminated young tephras (=30
ka) can be determined by locating the up-
per boundaries of the associated spheno-
chrons produced by single-crystal laser anal-
ysis (10). In appropriate circumstances the
Ar-*Ar laser probe can be used to date
accurately materials from the Holocene to
the Archean, from one edge of geologic
time to the other.
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