
thus providing a microscopic explanation 
for the large critical current at matching 
magnetic fields. 
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Human Influence on the Atmospheric 
Vertical Temperature Structure: 

Detection and Observations 
Simon F. B. Tett,* John F. B. Mitchell, David E. Parker, 

Myles R. Allen 

Recent work suggests a discernible human influence on climate. This finding is sup- 
ported, with less restrictive assumptions than those used in earlier studies, by a 1961 
through 1995 data set of radiosonde observations and by ensembles of coupled at- 
mosphere-ocean simulations forced with changes in greenhouse gases, tropospheric 
sulfate aerosols, and stratospheric ozone. On balance, agreement between the simu- 
lations and observations is best for a combination of greenhouse gas, aerosol, and ozone 
forcing. The uncertainties remaining are due to imperfect knowledge of radiative forcing, 
natural climate variability, and errors in observations and model response. 

There is considerable interest in the detec- sponse of sea surface temperatures and 
tion of a human influence on climate ( I ) .  clouds to 0, changes can be ignored ( 4 ) ,  
Recent studies (2, 3) have suggested that that the lags between radiative forcing and 
anthropogenic changes in greenhouse gases, climate response can be ignored, and that 
sulfate aerosols, and stratospheric ozone (0,) the response to forcings from different pe- 
may have altered the vertical temperature riods can be combined linearly. 
structure of the atmosphere. In (2), simula- We avoided making these assumptions by 
tions from several climate models were used 
to show that the pattern similarity between 
modeled and observed changes increased 
from 1963 to 1987. Several assumptions were 
made by Santer et al. (2): that the response 
to stratospheric 0, changes can be added 
linearly to other responses, that the re- 
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using time-dependent simulations from a 
single model including all the forcings. We 
extended the analysis to include the effect of 
the spatial mean as well as the patterns of 
change, and we extended the period consid- 
ered to 1961 through 1995 by using a new 
radiosonde temperature data set. With less 
restrictive assumptions than those used in 
(2), we confirm that recent climate changes 
are unlikely to be entirely due to unforced 
climate variability. We show that our model 
is, on balance, in best agreement with the 
patterns and spatial means of recent climate 
change over this extended period when 
forced with a combination of increases in 
greenhouse gases and tropospheric sulfate 
aerosols, and stratospheric ozone loss. 

Our model, HADCMZ ( S ) ,  is a coupled 
atmos~here-ocean model with all comDo- 
nents (ocean, atmosphere, and ice and land 
surface) having a horizontal resolution of 
2.5" in latitude by 3.75" in longitude. The 
atmosphere has 19 levels, with 5 levels 
above 100 hPa, and the ocean has 20. At- 
mospheric temperature data were diagnosed 
on 15 pressure levels (6). To assess the 
significance of our results, we used data 
from 700 years of a control integration of 
HADCMZ where climate forcing was kept 
constant (7). The standard deviation (SD) . . . . 
of annual mean tropospheric temperature in 
this control simulation is similar to that 
observed (7), which gives some confidence 
in model estimates of natural variability. 

Three different climate forcings (G, GS, 
and GSO) were used to force HADCMZ. 
To reduce noise, we computed the respons- 
es to each forcing by averaging the respons- 
es from an ensemble of four simulations. 
Responses are identified by the name of the 
forcing used. The G and GS simulations 
were started from four states in the control 
integration separated by 150 years (8). 

In G, HADCMZ was forced with an in- 
crease in equivalent C02, representing the 
effect of observed changes in all greenhouse 
gases, including C02, methane, and chlo- 
rofluorocarbons from 1860 to 1996 (5,9). In 
GS. HADCMZ was forced. in addition. with 
a simple parameterization of the effects of 

11 I 
90"N 60°N 30°N 0 30"s 60"s 90"s 

Latitude 

Fig. 1. Annual mean mass 
mixing ratio 0, trends 
(x 109 per year based on 
the use of a contour interval 
of 10 x 1 0-9 per year with 
extra contours at ?5 X 

per year. Stippling 
shows where values are less 
than -30 x 1 0-9 per year. 
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sulfate aerosols (10). In the G, GS, and 
control simulations, stratospheric O, re- 
mained constant (1 1 ). 

Stratospheric O3 'has been observed to 
decrease, perhaps starting as early as the 
mid-1970s ( 12). Therefore, the forcing in 
GSO was identical to that in GS, except 
that after 1974 estimated changes in strato- 
spheric O3 were included and the simula- 
tions integrated to 1996. The largest annual 
mean O3 losses occur at -100 hPa over the 
polar regions (Fig. 1) (1 3). The GSO simu- 
lations were started from 1974 states in the 
GS simulations. 

Zonal average, latitude pressure, temper- 
ature fields were computed from the re- 
sponses of all three forced simulations and 
were compared with zonal means of a re- 
cently developed radiosonde temperature 
data set (14). In the simulations, unlike the 
observations, no data were missing. We 
computed signals, using these fields, by tak- 
ing the difference between time means of 
the 10 years 1986 through 1995 and the 20 
years 1961 through 1980 (Fig. 2). We com- 
pared these signals to equivalent calcula- 
tions using the zonal-average estimates of 
the radiosonde observations. 

All three forced simulations show sim- 
ilar large-scale responses, with cooling in 
the stratosphere, warming in the tropo- 
sphere, and maximum warming in the up- 
per tropical troposphere. The observations 
also show a pattern of tropospheric warm- 
ing and stratospheric cooling but do not 
show the distinct equatorial upper tropo- 
spheric temperature maximum seen in the 
model simulations. The GSO signal shows 
greater cooling in the upper troposphere 
than the other simulations. Our signals 
show two main differences from those used 
by Santer et al. (2). First, the GS signal has 
much less hemispheric asymmetry than 
the equilibrium simulations shown by (2). 
This is due in part to the transient nature 
of the simulations, which gives less warm- 
ing in the Southern Hemisphere. It is also 
due in part to the smaller, and probably 
more realistic ( I s ) ,  ratio of sulfate aerosol 
to greenhouse gas forcing used in GS (1 6) 
than by Santer et al. (2), resulting in less 
cooling in the Northern Hemisphere. Sec- 
ond, the GSO signal shows less tropo- 
spheric warming than the linear combina- 
tions of climate forcings and 0, loss used 
by Santer et al. because in our simulations 
ocean temperatures respond to the forcing 
as a result of changes in stratospheric 0,. 

The regionally averaged signals (Fig. 3) 
show the differences between the model 
simulations and the observations more 
clearly. The GSO simulation is in best 
agreement with the radiosonde observa- 
tions in the upper troposphere-lower 
stratosphere but shows less warming than 

the other simulations and the observations 
in the lower troposphere. In extratropical 
regions, the GSO simulation shows less 
warming over all levels than the observa- 
tions. In the tropics, all simulations show 
maximum warming at -300 hPa, which is 
not seen in the spatially averaged obser- 
vations and may therefore be due to model 
error. 

There is a great deal of uncertainty in 
both the total and vertical distribution of 
Oj loss. To give a crude estimate of the 
sensitivity of our results to this, we con- 

structed a further signal (SENSl), which is 
the average of GSO and GS and, if we 
assume linearity, halves the effect of strato- 
spheric O3 (Fig. 3) .  We term the G, GS, 
GSO, and SENSl signals forced signals. 

To determine how similar the forced 
signals are to the observations, we used two 
measures of pattern similarity ( 17): (i) the 
weighted pattern correlation (R) (1 8-20) 
and (ii) the weighted congruence (g) (1 8). 
The correlation R is insensitive to the spa- 
tial mean changes, whereas g takes into 
account both the spatial mean and the pat- 

SOON 60mN 30'N 0 30% 60"s 90"s 
Latitude 

90°N 60"N 30"N 0 30"s 605 90"s 
Latitude 
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-1.2 -0.8 -0.4 

Fig. 2. Simulated and observed zonal mean temperature changes. (A) G signal; (6) GS signal; (C) GSO 
signal; and (D) observations. All signals are shown as a function of latitude and height and use a contour 
interval of 0.1 K. All signals are defined to be the difference between the decadal mean from 1986 
through 1995 and the 20-year mean from 1961 through 1980. 
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Fig. 3. Signals (the value for the period 1986 through 1995 less that for the period 1961 through 1980) 
averaged over four different regions. (A) Global (90°N to 90%); (6) north extratropics (90°N to 3OoN); 
(C) tropics (30"N to 30%); and (D) south extratropics (30% to 60%). The horizontal lines about the zero 
line show 21 SD for the control. Profiles are shown from the observations (light blue) and the G (red), 
GS (green), GSO (dark blue), and SENS1 (pink) signals. The uncertainty in the model signals, computed 
on the basis of afour-member ensemble, is &1 control SD (we assume normally distributed noise). If the 
model variability is correct, the observed values have an uncertainty of 2 2  SD. 
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greater than those com~l l t ed  based on the while havine little effect ixi, or even wors- tern (2P).  T h e  closer R a n J  g are to unity, 
the better the  agreement. T\vo different 
\velglitiny fields xvere used: mass ~veighting 
and volume neighting. Statistics comp~lted 
o n  the  basis of mass \\-eightlnc are most ., u 

sens~tive to changes in the loner atmo- 
s~lhere,  \vhereas statistics co~llpllted o n  the 
hasis of volume rreighting are nlost sensitive 
to clianges in the upper at~llospl~ere.  W e  
computed the  values of g a~nd R ,  ~ ~ s i ~ n g  both 
neightings, from the ohservations and from 
each of the forced slg~nals (Table 1) .  

T o  test the null hypothesis that tlie R 
alnd I' d u e s  are due to ~~nforcei l  var~ahilitv 
alone. we generated a populat~on ot 129 
sigl~als, tiom 7GL1 years of the control inte- 
gration (21 ). W e  computed R anci g values 
I~etween each of tlne forced sienals and each 
id these control signals to give co~nfidence 
il~tervals (22) .  

For all the s im~~lat lons  a~nd SEKS1, hot11 
R statistics hax~e values greater than tliose 
obtained 112 any part of tlie control simula- 
tion (Table 1) .  Thus, in the entire 7L70 years 
of the co~ntrol s im~~la t ion  no  R statistic nras 
ever as large as that cixnputed hetweein the 
ohservations and the forced simulations. If 
our estimate of l~iiforced climate variability is 
correct, the11 unfc)rced variabilitv can he 
ruled out as a reason, ~vitlh an  estimateil risk 
of error of -2?0 (22) ,  for the recent patterns 
ot cliange in the vertical temperature struc- 
ture of the atmosphere. I11 addition, the g 
statistics fur the GSO and SENSl  signals are 

c o ~ ~ t r o l  signals, s~~ggesting that,  for tlieae 
forcings, agreement taking account of the 
spatial iliealn is greater than expected from 
unforced varial~ilit\- alone. In contrast, tlie g 
statistic for the G anti GS signals is n.itliin 
that expected as a result of unforcecl climate 
\ariahilit\-. T h e  sig~nifica~nce is lower because 
the spatial means of both of tliese forceJ 
signals are warmer than the ohser~ations.  

Next,  \ye assessed irlnicli of the forced 
simulations is in best agreemelit wit11 tlie 
observatio~is. Because of ~ ~ n f o r c e ~ l  climate 
variabilitv, a.e I\-ould not expect the simu- 
lations and ohser\~ations to agree perfectly 
even if HADCbl2  Lvere perfect. Best aeree- 
ment must be deterllii~ned prohahilisticall\-: 
we asked, for tu.0 given simulations, \\-hat is 
the prohahilit\- that R or g has a greater 
value 111 one simulation than the  other? W e  
computed the probabilities for pairs ot 
forceJ slmulatlons, ~ ~ s i l l g  a bootstrap metli- 
od 123. 24) to take a c c o ~ ~ n t  of \rarlahilitv in 

\ .  , 

both the ohservations and the ensellible 
luealn siznals 125). 

L- , , 

For g, especial1)- for tlne volume weiglit- 
ing, G S O  is in slgn~ficantl\- better agreement 
v\.itli the obser\rations than either the G S  or 
G sim~llatiolis (Table 2, rev-s 1 and 2). For 
~:olume-neighted R ,  GSO is significa~itl\- 
worse than GS and G .  This result suggests 
that the greatest impact of 0; is to reiluce 
the errors in the mean temperature, com- 
pared to the G ancl G S  s im~~lat ions  (Fig. 3) .  

Table 1. Agreement, nieasurec( by pattern correlation (Rj and congruence (9, between forced signals 
and obse~vatioris based on tlie lnass and \/olclme wjeightng. We compuiec( valcles usng signals froni 
each s ~ m u a t o n  (G GS. and GSO) anc( the sens~tiility stcldy (SENSI). The maximum R or g value 
computed froln 129 control sgnals vlith each forcec( signal is sho~vn iri parentheses. Where a value is 
greater (sliovln in bold) than the value in parentheses to ~ t s  rght  unforced climate var~abi ty is unlikely to 
be responsible for the agreement 

Mass i.,jeghtng Volulne !!ve~ghting 
Signal 

R 9 R 9 

GSO 0.73 (0.15) 0.75 (0.43) 0.75 (0.55) 0.76 10.45, 
G S 0.73 (0.43) 0.72 (0.81) 0.81 (0.67) 0.60 (0.71, 
G 0.70 (0.46, 0.69 (C.84) 0.81 (0.66) 0 51 (0.76) 
SENSl 0.75 (0.49) 0.79 (0.68) 0.80 (0.62) 0.75 (0.58, 

Table 2. Estiniatee risk of error for varous statelnents (H-) .  Values indcate the probabity of obseriling 
the rescllts obtaned under the n u  hypothess (H,) that the statement (H.) 1s false. 

Mass weighti~g Volume !!weighting 
Statement 

R 9 R g 

H,: GSO better than GS 0.59 0.13 1 .00.i 0.00' 
H, : GSO better than G 0.19 0.01 ' 1 .00 t  0.00' 
H,: GS better than G 0.17 0.07 0.11 0.03' 
H,: SENSI better t h a ~  GSO 0.12 0.06 0.00' 0.65 
H,: SENSI better than GS 0.23 0.00' 0.66 0.00' 
H,: SENSI better than G 0.Oi-  0.00' 0.55 0.00' 

*('$ ;lqdcate values at whcti H,(H,) may be rejecteo at the jc!c level. Values of 0.00(1 .00i are i~here the statement H- 
.,as never(al,!~ays) rejected based on the limited rumber of it-dependent R and g values (22) ava'abe. 
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ening, the pattern about the mean value. 
Table 2, row 3, suggests that the G S  

signal is 111 sllglitly hetter agreement uitl i  
the observed temperature changes than the  
G signal. T h e  SENSl  signal is either slgnif- 
icantl\- better tlna~i or not significantl\- ilif- 
ferent from elther G S O ,  GS,  or G 011 the 
basis of R ancl g (Table 2 ,  rix\-s 4, 5 ,  a n J  6) .  
O n  balance, out of all tlie signals consid- 
ered, SENSl  is 111 best agreement with the 
observations. 

Our results support the hypothesis of an  
anthropogenic effect on atluosplieric vertical 
telliperature s t ruc t~~re  as a result of the 
changing co~ncentratio~ls of greenhouse gas- 
es, stratospheric O3 (probably \\-eaker tlian 
in the GSO sim~~lat lons  reporteJ here), a~nd 
possibly sulfate aerosols since 1961. T h e  
comparison also acts as a model validation 
and increases tlie col~fi~iellce in the ability of 
HADCA'l2 to predict future climate change. 

There are several lilllitatlo~ns in the cur- 
relit work. Agreement betrveen the ol~serva- 
tions aliil forceLl sillllllatiolis is onlv f o ~ ~ n i l  o n  
vex\- large spatial scales, and all tlie simula- 
t io~is show too much upper tropospheric 
~varming in thc troplcs. W e  ha\.e neglected 
posslble natural external forcings, such as 
1:olcanic aerosols and changes in solar forc- 
~ngs ,  anil also the effects of other anthropo- 
gemc forcl~lgs such as tropospheric 0 ;, 11011- 

sulfate aerosols, and the indirect effect of 
sulfate aerosols. There is uncertaintv 111 tlne 
magnitude and distril3ution of tlie forciligs 
caused h\- stratospheric 0, and sulfate aero- 
sols. It 1s likely that time-varying biases re- 
~uai l i  in the racliosoncle data, especially in 
the stratosphere, and our ~vork lias taken 110 

account of IlieasLIrellient ~111certai11tj or ~llea- 
suremelnt error. Finally, and most critically, 
our estimate of unforced variability is model- 
liased and ma\- he in error. 
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Dynamics of Oxidation of a Fe2+-Bearing 
Aluminosilicate (Basaltic) Melt 

Reid F. Cooper," John B. Fanselow, J. K. Richard Weberf, 
Dennis R. Merkley, David B. Poker 

Rutherford backscattering spectroscopy (RBS) and microscopy demonstrate that the 
-1 400°C oxidation of levitated droplets of a natural Fez---bearing aluminosilicate (basalt) 
melt occurs by chemical diffusion of Fe2-- and C a 2  to the free surface of the droplet; 
internal oxidation of the melt results from the required counterflux of electron holes. 
Diffusion of an oxygen species is not required. Oxidation causes the droplets to go 
subsolidus; magnetite (Fe,O,) forms at the oxidation-solidification front with a morphol- 
ogy suggestive of a Liesegang-band nucleation process. 

T h e  structure and dynamics of silicate melts 
are first-order dependent o n  the valence 
state of incorporated transition metal cat- 
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ions, particularly, in the case of geological 
melts, iron ( 1 ,  2) .  As a consequence, under- 
standing tlie chemical diff~~sion process by 
\vhich a melt comes into redox eouililxium 
lvith its environment 1s critical in character- 
izlng its s t r~ctural  and chemical evolution. 
Diff~~sion st~rdies have emphasized two ap- 
proaches: (i) oxygen (I") tracer diffusion 
experiments [for example, (3, 4)] and (ii) 
transition-metal-cation redox experiments, 
which are analvzed based o n  the assum~tion 
that diffusion df an  oxyzen species i o n -  
nates the redox kinetics [for example, (5-7)]. 
There is a noted discrepancy between the 
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