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Distinct Mechanisms for Synchronization and 
Temporal Patterning of Odor-Encoding 

Neural Assemblies 
Katrina MacLeod and Gilles Laurent* 

Stimulus-evoked oscillatory synchronization of neural assemblies and temporal patterns 
of neuronal activity have been observed in many sensory systems, such as the visual and 
auditory cortices of mammals or the olfactory system of insects. In the locust olfactory 
system, single odor puffs cause the immediate formation of odor-specific neural as­
semblies, defined both by their transient synchronized firing and their progressive trans­
formation over the course of a response. The application of an antagonist of ionotropic 
7-aminobutyric acid (GABA) receptors to the first olfactory relay neuropil selectively 
blocked the fast inhibitory synapse between local and projection neurons. This manip­
ulation abolished the synchronization of the odor-coding neural ensembles but did not 
affect each neuron's temporal response patterns to odors, even when these patterns 
contained periods of inhibition. Fast GABA-mediated inhibition, therefore, appears to 
underlie neuronal synchronization but not response tuning in this olfactory system. The 
selective desynchronization of stimulus-evoked oscillating neural assemblies in vivo is 
now possible, enabling direct functional tests of their significance for sensation and 
perception. 

Although stimulus-evoked oscillatory syn­
chronization of neuronal assemblies has been 
observed in many sensory systems (1-3), the 
mechanisms (cellular, synaptic, and network) 
underlying coherent recruitment of neurons 
still remain elusive (4). Consequently, it has 
not yet been possible to selectively alter or 
suppress the synchronization of such assem­
blies in vivo, a step essential to test their 
functional significance for neural coding. The 
possible functions (if any) of neural synchro­
nization thus remain largely unknown. In the 
vertebrate olfactory system, bursts of odor-
evoked 7 (30 to 60 Hz) oscillations ("induced 
waves") can be seen in the olfactory bulb 
electroencephalogram during each respiratory 
cycle (5). Induced waves are generated within 
the bulb (I) and have been postulated to 
result from negative-feedback interactions be­
tween granule and mitral cell populations (6). 

Odor-evoked synchronization of firing has 
been observed also in the locust Schistocerca 
americana (7). In the locust, odors puffed on 
an antenna cause the synchronization of 
groups of antennal lobe projection neurons 
(PNs) (the functional analogs of vertebrate 
olfactory bulb mitral-tufted cells), resulting in 
20- to 30-Hz local field potential (LFP) oscil-
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lations in the mushroom body (the functional 
analog of the piriform cortex) and in sub­
threshold oscillatory responses in its intrinsic 
neurons, the Kenyon cells (KCs) (7). Al­
though odor puffs evoke long oscillatory LFP 
bursts, individual PNs generally participate in 
the synchronized ensembles only for short 
epochs, but at times that are both neuron- and 
odor-specific (7). The bursts of odor-evoked 
LFP oscillations therefore result from dynamic 
neural ensembles whose components (the 
PNs) phase-lock transiently to one another 
and change reliably during a single odor re­
sponse (2, 7). To assess whether the periodic 
neural synchronization results primarily from 
local feedback inhibition, as hypothesized for 
the vertebrate olfactory system (6), we studied 
directly the role of local neurons (LNs) in 
synchronizing groups of PNs in the antennal 
lobe of the locust olfactory system. 

Intracellular labeling of local neurons (8) 
revealed extensive dendritic arbors through­
out the entire antennal lobe neuropil, provid­
ing a potential morphological substrate for 
widespread synchronization (Fig. 1A). Simul­
taneous intracellular recordings were made 
from synaptically connected local and projec­
tion neurons in vivo (n = 4 pairs) (Fig. IB). 
They revealed that, during odor responses, the 
timing of the periodic depolarization in LNs 
corresponds precisely to that of the periodic 
hyperpolarization in postsynaptic PNs, and 
showed directly that LNs lead PNs by a quar-
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ter ~eriod (96" ? 53". mean + SD; n = 164 
cycies), as predicted fir olfactory bulb circuits 
(9). Injecting depolarizing current directly 
into individual LNs evoked sustained inhibi- 
tion in postsynaptic PNs (Fig. 1C). Transmit- 
ter release from LNs was spike independent 
(1 0) and graded (I I ). Hyperpolarizing one LN 
never abolished the ~eriodic inhibition of a 
postsynaptic PN during an odor response (I I). 
Hence, the periodic inhibition of any one PN 
during an odor response must result from con- 
verging inhibitory input from many LNs. This 
can be seen in Fig. 1B also, where the size of 
each periodic inhibitory postsynaptic poten- 
tial (IPSP) in the PN (asterisks) was not 
closely correlated with that of the correspond- 
ing depolarization of the impaled presynaptic 
LN. Parallel studies with immunogold anti- 
GABA immunocvtochemistrv and electron 
microscopy revealed the existence of direct 
GABAergic contacts onto the dendrites of 
PNs in the antennal lobe (12). 

To examine directlv whether inhibition bv 
LNs underlies the synchronized oscillatory re- 
sponses of PNs, we injected picrotoxin (PCT, 
an antagonist of ionotropic GABA receptors) 
locally in the antennal lobe and mushroom 
body (13). We measured odor-evoked syn- 
chronization of activity before and after PCT 
injection in three ways: (i) from the power 
spectrum of LFPs recorded in the mushroom 
body (monitoring population oscillations); 
(ii) from autocorrelations calculated from an- 
tennal lobe PN membrane potential (moni- 
toring single-cell oscillations); and (iii) from 

Fig. 1. Local neurons in- A 
hibit projection neurons 
monosynaptically. (A) 
Camera lucida drawing 
of a local neuron stained 
intracellularly from a den- 
drite by injection of cobalt 
hexamine. Dense, exten- B 
sive arborizations occu- 
py the entire neuropil, LFP 
and no axon is present. 
Bar, 100 pm. (6) Simul- 
taneous intracellular re- 
cordings from an anten- 
nal lobe local neuron (LN) c 
and a postsynaptic pro- rjj)]jj~ 911;l.' i1'111 

jection neuron (PN), as 1 /d it/i(h/t, 
well as the local field po- - 
tential (LFP) from the ipsi- 
lateral mushroom body, 
during a response to a cherry odor in vivo. PN 
spikes are clipped. Calibrations: horizontal, 40 ms; 
vertical, 200 pV (LFP), 4 mV (PN), 5 mV (LN). (C) 
Direct current injection pulse (between arrow- 
heads, 600 PA) in the LN [same pair as in (B)] 
inhibits tonic firing of PN (held depolarized by 300- 
pA constant current to evoke tonic spiking). The 
experiment was carried out in the absence of odor. 
The LN does not oscillate intrinsically upon depo- 
larization. PN spikes are clipped. Calibrations: hor- 
izontal, 0.7 s; vertical, 32 mV (PN), 18 mV (LN). 

cross-correlations between PN membrane DO- 

tentials and mushroom body LFPs (monitor- 
ing phase locking between antennal lobe and 
mushroom body) (14). Examples of the latter 
analysis and the raw data to which it was 
applied are shown in Fig. 2. In control condi- 
tions, odor puffs evoked a burst of LFP oscil- 
lations in the mushroom body, indicating os- 
cillatory responses in odor-specific sets of an- 
tennal lobe PNs, of which one was recorded 
intracellularly (Fig. 2A). The transient syn- 
chronization between this PN and the LFP 
oscillations can be seen in a sliding cross- 
correlation (14), which represents the pro- 
gressive change of the cross-correlation func- 
tion during the odor response (Fig. 2A). The 
vertical stripes in the cross-correlation show 
that this PN was phase-locked to the LFP 
oscillations durine an e ~ o c h  of the ensemble u L 

response. The spacing between the stripes in- 
dicates the ~eriodicitv of the oscillation: their 
position relative to zero-time-lag indicates the 

Fig. 2. Picrotoxin injection in the an- 
tennal lobe selectively abolishes the 
oscillatory synchronization but not the 

phase of the two signals. 
Pressure injection of PCT in the antennal 

lobe (1 3) abolished the LFP oscillations in the 
mushroom body (Fig. 2B), the periodic IPSPs 
caused in PNs by LNs (Fig. 2, A and B), and 
the periodic cross-correlation pattem between 
LFP and PNs (Fig. 2B) within a minute of the 
injection (n = 6). PCT, however, never sup- 
pressed the response of PNs to odors that 
normally activated them (Fig. 2B). The sup- 
pression of odor-evoked LFP oscillations by 
PCT, therefore, resulted not from a silencing 
of the PNs, but most likely from their desyn- 
chronization, caused by the block of GABA- 
mediated inhibition. This was confirmed in 
each case by auto-correlation of the PN re- 
sponses, showing that PCT suppressed the 20- 
to 30-Hz periodicity of their responses to 
odors (1 I ). Bath application of PCT (n = 26) 
had the same effects as local injection. Injec- 
tion of the same volume of saline in the 
antennal lobe had no effect on the oscillatory 

responsi~eness of PNs. [(A) to (D)] 
(top trace) LFP from mushroom body; 
(middle) simultaneous intracellular re- 
cording from antennal lobe PN during 
odor puff (indicated by horizontal bar); 1 ,s 7 (bottom) sliding cross-correlation be- 
tween LFP and PN traces (14). Only - 
the relative (and not the absolute) val- 1 .O 
ues of the cross-correlation functions # 
matter. High values in hot colors, low F 
values in cold colors. (A) Control re- 0.5 

sponse to mint odor. The biphasic PN 
response and the prominent lPSPs 
are apparent during the odor re- 
sDonse. The oscillatory LFP indicates 
synchronized and rhythmic firing of 
many other PNs during the odor re- 
sponse. The cross-correlation be- 
tween PN and LFP shows a striped 
pattern with -50-ms period during 
the first half of the odor puff (vertical 
bar between 0.5 and 1.5 s), indicating 
an odor-evoked transient synchroni- 
zation between this PN and the LFP 
(141.. (B) Same pair as in (A), 2 min 
after pressure injection of 800 pM I.  
PCT into the antennal lobe. Although a 
the response pattern of the PN to f 
mint is not qualitatively altered (the F o. 
periods of initial excitation, suppres- 
sion, and subseauent excitation are 
preserved), the ~PSPS have disap- V 

peared (indicating the block of LN- -100 0 100 -100 0 100 
Time lag (rns) Time lag (rns) 

mediated fast inhibition), and the 20- 
Hz LFP oscillations are abolished. The cross-correlation is aperiodic, indicating desynchronization of the PN 
assembly representing mint. (C) Local injection of saline into the antennal lobe has no effect on synchroniza- 
tion and LFP oscillations, indicating that the manipulation per se does not disrupt the local circuits. A different 
animal was used from that in (A) and (B). (D) Local injection of PCT into the calyx of the mushroom body (where 
the axonal collaterals of PNs terminate) does not affect either the responsiveness of PNs to odors or their 
synchronization (assessed from the LFP oscillations or the periodic cross-correlation). [(A) to (D)] PN spikes are 
clipped. Calibrations (electrophysiological traces): horizontal, 1 s; vertical (in millivolts): LFP: [(A) and (B)] 0.2, (C) 
0.5, (D) 0.3; PN: [(A) and (B)] 10, (C) 5, (D) 30. 
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synchronization (Fig. 2C) (n = 4) (15), indi- 
cating that the integrity of the local circuits 
was not affected by the mechanical aspects of 
drug injection. Injection of PCT into the 
calyx of the mushroom body (n = 6) also did 
not block the odor-induced LFP oscillations 
or the oscillatory responses of PNs (Fig. 2D), 
indicating that PN svnchronization does not 
depend o i  inhibitor; feedback in the mush- 
room bodv. 

~mmu~oc~tochemica l  examination of syn- 
apses in the dendritic region of the mushroom 
body indicated that its intrinsic neurons, the 
KCs, receive direct GABA-containing inputs 
from neuraas other than the PNs (12, 16). 
Inhibition in the mushroom body might thus 
also contribute to synchronization of the KCs 
receiving coherent inputs from PNs. To ex- 
amine this idea, we superfused the brain with 
PCT, thus blocking inhibition both in the 
antennal lobe and the mushroom bodv. and , , 
monitored synchronization using the mush- 
room bodv LFP in = 17). A minute after PCT 
application, odor-evokkd oscillations disap- 

Frequency (Hz) 

Fig. 3. Effect of PCT applied simultaneously to the 
antennal lobe and mushroom body on synchroni- 
zation and LFP oscillations. (A) Power spectrum 
calculated from the LFP oscillation (example in 
inset) evoked by a cherry odor (horizontal bar) in 
an intact animal (n = 20 odor presentations). A 
narrow peak is seen at -24 Hz. (B) Superfusion of 
1 mM PCT onto the brain of the same animal 
rapidly eliminates the LFP oscillations, as a result 
of the desynchronization of PNs in the antennal 
lobe (Fig. 2). (C) Seven minutes later, odor puffs 
now evoke bursts of large-amplitude population 
spikes in the mushroom body (inset), whose pow- 
er spectrum also shows a peak at 24 Hz, despite 
the desynchronization of PNs. Calibrations (in- 
sets): horizontal, 1 s; vertical, 500 pV. 

peared in the LFP because of the desynchro- 
nization of PNs in the antennal lobe (Fig. 3, 
A and 6). A few minutes later, however, odor 
puffs evoked rhythmic bursts of large negative 
population spikes, indicative of massive syn- 
chronized firing of KCs (Fig. 3C). Power spec- 
tra of these oscillations showed that they oc- 
curred at the same frequency as control LFPs 
(1 7) (Fig. 3C). This result indicates that the 
mushroom body can naturally oscillate coher- 
ently at 20 to 30 Hz in response to a desyn- 
chronized input, and that inhibition may nor- 
mally control the extent of this local synchro- 
nization. Examination of the KC axon tracts 
revealed reciprocal synapses that do not con- 
tain GABA and are therefore most likely 
excitatory (12, 18). Such recurrent excitation 
between neighboring KCs might participate 
in synchronizing their activity (19). 

PNs generally respond to odors with com- 
plex temporal firing patterns that often in- 
clude discrete periods of silence (2, 7). We 
assessed whether these slower tem~oral  oat- 
terns, apparently sculpted by inhibition, also 
depend on PCT-sensitive inhibition in the 
antennal lobe. Two examples of PNs with 
such responses and of the effects of PCT on 
these responses are shown in Fig. 4. Although 
local injection (Fig. 4A) or bath application 
(Fig. 4B) of PCT at millimolar concentrations 
abolished the LN-mediated periodic IPSPs 
(arrowheads) and synchronized firing of the 
PNs (resulting in suppression of LFP oscilla- 
tions), PCT had no qualitative effect on the 
temporal response patterns of the PNs (Fig. 
4). Even though the LN-mediated IPSPs re- 
sponsible for PN synchronization disappeared 
in PCT, the timing and duration of the PN 

responses remained unchanged and odor- 
specific, as seen both in intracellular re- 
sponses and histograms of spike activity 
constructed from repeated presentations of 
an odor (Fig. 4)  (n = 17 PNs). The odor- 
and neuron-specific modulation of firing 
observed in PNs is therefore caused by 
mechanisms independent of PCT-sensitive 
GABA-mediated inhibition. 

In conclusion, local neurons with exten- 
sive arbors monosynaptically inhibit projec- 
tion neurons in the antennal lobe by way of 
fast, PCT-sensitive, GABA-containing syn- 
apses. This inhibition underlies the synchro- 
nization of ensembles of projection neurons 
and thus the odor-evoked LFP oscillations in 
the mushroom body. These results give exper- 
imental support to models of oscillatory syn- 
chronization proposed for the vertebrate ol- 
factory bulb (6, 20) and neocortex (21) and 
extend evidence obtained in vitro from rat 
hippocampal slices (22). Fast inhibition in the 
locust antennal lobe does not, however, un- 
derlie the temporal response patterns ex- 
pressed by individual PNs. Although slow- 
response patterns can also be observed in ver- 
tebrate mitral cells in vivo (23), it is not 
known whether they depend, as observed 
here, on synaptic mechanisms distinct from 
those causing synchronization. We also 
showed that the mushroom body is indepen- 
dently tuned to oscillate at 20 to 30 Hz. This 
probably enables it to "accept" the 20- to 
30-Hz input from the antennal lobe. PCT- 
sensitive inhibition in the mushroom body 
appears to prevent stimulus-evoked runaway 
excitation that might otherwise result in sei- 
zures and, probably, loss of input specificity. 

Fig. 4. PCT injected in A B 
the antennal lobe (A) (I 
mM) or perfused on the 
brain (B) (5 mM) abolish- 
es PN synchronization 
but does not affect odor- 
specific temporal re- 
sponse patterns of PNs. 
Compare the slow re- 

, p.. sponse patterns of two 
different PNs (A and B) .. . . . . . . .. .. .. , .. , , . 

~ineol- Cineole 
recorded intracellularly in iii 

rl iii 

vivo before (i and i i i )  and 20 Hz Control Control 
after ( i i  and iv) PCT appli- 
cation. Although PCT 
abolishes the LFP oscil- o .hd~I.~.h I 1 0 11 .L....- J 

lations (caused by syn- 
chronized PN activity :m/ and the trains of rhyth- 
mic lPSPs visible in indi- 
vidual PNs [arrowheads oO 
in (i) ] ,  the timing and du- 

1 2 o 1 2 

ration of firing of the PNs Time (s) Time (s) 

are not altered, even when periods of inhibition appearto be caused by the PCT-sensitive IPSPs. ( i i i  and 
iv) Post-stimulus time histograms (instantaneous frequency in hertz) constructed from repeated presen- 
tations of the same odor before ( i i i )  and after (iv) PCT application for these two neurons. Trial numbers: 
Aiii, 10; Aiv, 10; Biii, 15; Biv, 4. Bin size, 50 ms. (A) and (B) are from different animals. PN spikes are 
clipped. Calibrations: horizontal ( i  to iv), 1 s ;  vertical: 200 pV (LFP); 10 mV (PN). 
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The existence of distinct but compatible os- 
cillatory mechanisms in the antennal lobe 
and mushroom body suggests that they are 
cooperative means to optimize synchroniza- 
tion and information transfer. Electrical stim- 
ulation of the lateral olfactorv tract in rat 
piriform cortex slices evokes damped field- 
potential oscillations at a frequency similar to 
the normal bulbar input (24). Models of piri- 
form cortex suggest that its networks can, in 
principle, be made to oscillate at this frequen- 
cy by way of appropriate and realistic intrinsic 
recurrent connections (25). These data thus 
suggest that similar cooperative mechanisms 
may operate in the mammalian and locust 
olfactory systems. 

Most importantly, the odor-specific tem- 
poral firing patterns of PNs do not depend 
on LN-mediated PCT-sensitive inhibition. 
They may result from slower antennal lobe 
network dynamics, possibly as a result of 
different inhibitory mechanisms (26) or 
temporal structuring of the olfactory recep- 
tor responses, or both. This independence 
of mechanisms for temporal patterning and 
synchronization of neural ensembles thus 
provides a tool to desynchronize odor-cod- 
ing assemblies without \otherwise altering 
their spatiotemporal composition. Hence, it 
is now possible to test, in vivo, the impor- 
tance of synchronization for odor percep- 
tion and memorv formation. 
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hexamine. Drugs (diluted in saline) used were onotropic 
GABA receptor blockers [picrotoxn (PCT, Sigma; final 
concentrat~on, 0.1 to 10 mM, n = 32 exper~ments), 
gabarine (SR-95531, Research Biochemical Co.; 0 1 to 
10 mM, n = 61, and b~cuculline methiodide (BMI, Sigma; 
5 to 7.5 mM, n = 5)). Of these, picrotoxin was the most 
effective, causing a complete block of oscillations at a 
bath concentration of 100 yM. Gabazine was less ef- 
fective (complete block of oscillations at 5 mM). Bicu- 
culne was totally ineffect~ve, even at high concentra- 
tions (15). Other evidence suggests that histamine IS an 
inhibitory neurotransmitter in the brain of crustaceans 
[B. J. Claiborne and A. I .  Selverston, 3. Neurosci. 4, 708 
(1 984); T. McClntock and B. W. Ache, Proc. Nati Acad. 
Sci. U.S.A. 86, 8137 (1989)l and Insects [R. C. Harde, 
Nature 339, 704 (1989)l. We thus tested the effective- 
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gated chloride channel, the effect of histamine receptor 
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(The Math Works) as described (7). The cross-correa- 
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cross-correlations calculated from each pair over n pre- 
sentations of the odor (A: n = 20; B, n = 23; C: n = 16; 
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Because cross-correlations were performed on contin- 
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potential. The per~od~c structure of cross-correlations 
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