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Visual Pigment Gene Structure and the
Severity of Color Vision Defects

Jay Neitz,” Maureen Neitz, Pamela M. Kainz

Rearrangements of the visual pigment genes are associated with defective color vision
and with differences between types of red-green color blindness. Among individuals
within the most common category of defective color vision, deuteranomaly, there is a
large variation in the severity of color vision loss. An examination of specific photopig-
ment gene sites responsible for tuning photopigment absorption spectra revealed dif-
ferences that predict these variations in the color defect. The results indicate that the
severity of the defect in deuteranomalous color vision depends on the degree of similarity
among the residual photopigments that serve vision in the color-anomalous eye.

Prcdicting the severity of a deficit from
examination of a person’s genetic makeup
may prove to be particularly challenging for
disorders that involve the nervous system
and manifest themselves primarily as differ-
ences in behavior. Nonetheless, here is an
example: a class of human color vision de-
fect in which differences among the genes
predict the severity of color vision loss.
Deuteranomaly is the most common inher-
ited color vision defect, affecting more than
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1 in every 20 men in the United States. The
condition arises from the absence of one of
the cone photopigments, the normal pig-
ment that is sensitive to middle wave-
lengths (M). Even though deuteranomalous
individuals are missing normal M photopig-
ment function, they retain varying degrees
of trichromatic color vision, which is based
on a pigment that is sensitive to short wave-
lengths plus two narrowly separated pho-
topigments that absorb in the long-wave-
length (L) region of the spectrum.

In this study, 16 young men were iden-
tified as deuteranomalous on the basis of a
standard color matching test for red-green
color vision defects—the Rayleigh match.
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In this test, the person is asked to mix
together a red and a green light in a pro-
portion that exactly matches the appear-
ance of a monochromatic yellow light, as
has been previously described (1). A deu-
teranomalous person chooses a much higher
proportion of green light in the mixture
than does a person with normal color vi-
sion. This color-matching test also distin-
guishes deuteranomalous trichromats from
dichromats [as was done in (2)], who have
only two cone photopigments and thus suf-
fer the most severe of the common red-
green color defects. Once we differentiated
deuteranomalous men from men with nor-
mal color vision and from dichromats by
means of the Rayleigh match, we assayed
the severity of the color vision impairment
using the American Optical, Hardy, Rand
and Rittler (AO-HRR) pseudoisochromatic
plates for color vision testing. From the
complete set of plates included in the test,
we used a series of six test figures designed
for grading deutan color defects (Fig. 1A).
Each design in this sequence is composed of
a reddish-colored symbol on a background
of gray dots. Each symbol in the progression
is more intensely colored than the last.
The deuteranomalous participants var-
ied enormously in their performance on this
test. Although all 16 men had been classi-
fied as deuteranomalous in the color-
matching test, a subset of these participants
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nonetheless behaved normally in the every-
day tasks of recognizing, naming, and sort-
ing colors. This subgroup reported that they
had no indication of a color vision abnor-
mality before being identified as “color de-
ficient” by formal color vision testing.
When given the plate test, individuals in
this group were challenged only by the most

difficult plate (plate 1, Fig. 1A), a plate that
some people with normal color vision also
fail to interpret correctly. In contrast to the
least affected men, the most extreme case
(participant 189) was unable to detect any
of the symbols, even the one with the larg-
est color difference from its background
(plate 6, Fig. 1A). The symbol, an “X” in

that design, appears to be red to those with
normal color vision, but it was invisible
among the gray dots to participant 189.
The extent of the defect can be ex-
pressed numerically as the distance (D) in
color space that must differentiate the sym-
bol on the plate from its background before
the person can interpret it correctly (3, 4).

Fig. 1. (A) Reproductions of five symbols from the
AO-HRR pseudoisochromatic plates used to as-
sess the degree of color vision defect. In order of
decreasing difficulty from left to right, they are read
as V, O, O, A, X by a person with normal color
vision. The numbers below each plate are the D
values (3) used to quantitatively express the color
difference between the symbol and its gray back-
ground. One plate (no. 5 in the progression) is not

Plate 1: 0.011
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0.

shown. Plates are shown as examples of points

discussed in the text and not for color vision test- B Armax ()

ing. The AO-HRR plates are printed with permis- T s et Oy Rl (18
sion from Richmond International Incorporated §| § § =) 556.7 i
(copyright 1954). (B) Spectral tuning of L pigments = = = —)— 552.4 556

in deuteranomalous .men. The majority of the .y 553.0 559
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exon 5 of an L pigment gene. Exons 2 through 4 - ND 554
erjcode amino acid substitutions that produce rel- e o =

atively smaller spectral shifts among the L pig- c A e 5 Gen (Y“yss‘f”;?’iw

ments. In the diagrams of the genes (arrows) Geno Downgtream Gane Pradictad. - \Dof most
shown here and in (C), except where specifically arrangement ist  Hybrid Exons arrangement spectral difficult
noted, red and green denote codons specifying Participant from Southern blots gene _ genes RPN, 5 P (this study) separation plate read
the amino acids indicated in the diagrams below g d2 mEp— A - - - N = 0.0 >0.081
the arrow at left in (B). Red: T, threonine; S, serine; E E df wmp— s N 0.0 >0.081
|, isoleucine, and A, alanine. Green: |, isoleucine;

V, valine, Y, tyrosine, A, alanine; T, threonine; and >5 e

S, serine. To predict the spectral separation of the = % e e i D B PSS w ol Bk
pigments in deuteranomalous men, the table 11,116 .
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grammed genes were measured in vitro (15, 16). S 012 el A A N N Y o 038 0.072
(C) Analysis of the X-linked visual pigment genes in dzj oo . Ry A n e e e
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the left shows the gene arrangements as deduced AR o e e T 5 NOOWTYL ) et
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of M-L hybrid genes and the number of M pigment
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known. Exons 2, 3, and 4 were examined to de-
termine whether the first gene and the downstream hybrid M-L pigment genes
differed at sequences in exons 2, 3, and 4 that encode spectrally active amino
acid loci (17-19). We have included for comparison the results from two
dichromats (deuteranopes; top two rows) from a previous study (2). The
asterisk indicates individuals who had sequences representing multiple hybrid
M-L pigment genes with subtle differences in exon 2; sequences that speci-
fied 1185, Val''", and Tyr' '€ were present but so were exon 2 sequences that
specified one or more of the amino acids Thré®, lle’'", and Ser'6. An issue for
the three participants (028, 190, 017) who have multiple fusion genes that are
substantially different is that there is evidence to suggest that not all the distal
genes in the array are expressed (25). For these men, it is possible that not
802
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knowing which gene is expressed could limit predictive power. In the absence
of information about which genes are expressed, the spectral separation
values given are the largest possible for the L and M-L pigment combinations
each man could have, based on the deduced gene structures. Participants
017 and 190 would be predicted to have a spectral separation of 9 nm if they
expressed only the fusion gene that is least different from the first gene in the
array. This would not substantially change their predicted behavior. The worst
case for participant 028 would predict a 3.7- to 4.0-nm spectral separation
and poorer color vision than he exhibits. Spectral separations were calculated
with the A values measured in vitro [values from (75) are indicated by t;
values from (76) are indicated by 1] shown in Fig. 1B.
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Lower D values indicate better color vision;
the men categorized as having “very mild”
defects were able to read the plate with D =
0.022. Higher D values indicate poorer col-
or vision; participant 189 was assigned D >
0.081 because he was unable to interpret
even the most vivid plate.

Results from Southern (DNA) analysis
have revealed that the pigment gene ar-
rangements of deuteranomalous men are
different from those of most men with nor-
mal color vision (5-7). However, even
though deuteranomalous people vary in the
numbers and ratios of their M and L cone
pigment genes, as do normals (9, 6, 8), the
genetic differences failed to correlate with
the extent of color vision defect. Southern
analysis of the pigment genes of our 16
participants also showed no correlation
with differing degrees of color vision defect
(Fig. 1C). It is noteworthy that most of the
deuteranomalous men had apparently com-
plete M pigment genes. These are indicated
by the green arrows in Fig. 1C. The reason
M pigments do not contribute to deutera-
nomalous color vision is not understood.

In people with normal color vision, the
capacity to distinguish colors in the red-to-
green region of the spectrum is based on the
difference between the M and L cone pig-
ments. In contrast, the color vision of the
deuteranomalous is based on two more nar-
rowly separated pigments (9-11). One hy-
pothesis that has been proposed to explain
the differences in color vision among deu-
teranomalous people is that individuals dif-
fer in the spectral separation of their re-
maining X-encoded pigments. A deuter-
anomalous person who has well-separated
pigments would have better color vision,
whereas one whose pigments are more sim-
ilar would have poorer color vision. This
idea has been called the “spectral proximity
hypothesis” (4). A molecular genetic test of
the spectral proximity hypothesis requires
information about the amino acids that
control the spectral sensitivities of the X-
encoded visual pigments; information that
is now available (2, 12-16). All spectral
differences are encoded by exons 2 to 5.
The largest spectral shifts are encoded by
changes in exon 5 that divide the X-encod-
ed pigments into two major classes, M and
L (9, 13). Exons 2, 3, and 4 each encode
changes that produce relatively smaller
spectral shifts, making them candidates for
controlling spectral differences among the
pigments in deuteranomalous people (Fig.
1B).

We studied the genes of the 16 deutera-
nomalous participants by performing long
polymerase chain reaction (PCR) and then
examining the products by means of restric-
tion analysis and direct sequencing (17-19)
to analyze the X-linked pigment gene array

TeEg I .

of each man (Fig. 1C). We then constructed
amodel of the pigment gene arrangement for
each person that was used to predict the
largest spectral separation among his L pig-
ments. On the basis of color vision behavior,
participants segregated into five different
levels of deutan color vision defect, ranging
from dichromatic to nearly normal.

Spectral tuning studies suggest that ami-
no acid differences encoded by exons 2, 3,
and 4 of the photopigment genes are most
likely to be responsible for the spectral sep-
aration between the X-encoded pigments
underlying deuteranomaly. The spectral
proximity hypothesis, supported by our re-

“sults, predicts that the presence of the ac-
tive differences in all three exons would be
required to produce the largest spectral sep-
aration and therefore the best deuteranom-
alous color vision. The presence of relative-
ly fewer active differences would predict
poorer color vision. Most of the participants
who were least affected (very mild) had
differences in all three exons among their
genes with an L pigment exon 5. Those who
were the second least affected (mild) had
differences in exon 2 plus differences in
either exon 3 or 4, but not both. The
severely affected men had differences in
exon 2 but in neither exon 3 nor 4. Those
people were distinguished from the dichro-
mats who were identified as having a single
gene sequence. A few men did not follow
this trend but were nonetheless predicted
from the DNA sequences. For example, par-
ticipant 182 has quite good color vision but
he has differences in the same set of exons
as do participants 191, 185, and 027, who
have poorer color vision. This is explained
by the observation (16) that differences
encoded by exons 2 and 4 have a larger
effect when they occur in pigments with
Ser'® (as in participant 182) than when
the pigments share Ala'®®. The general cor-
respondence between the spectral separa-
tion predicted from the genes and the se-
verity of vision defect supports the spectral
proximity hypothesis.

The spectral proximity hypothesis has
often been challenged and alternate hy-
potheses proposed. For example, it has been
suggested that differences in the severity of
color vision defects derive from variation in
the amount of pigment produced (11, 20) or
in the stability, quantum efficiency, or sig-
naling of the pigment molecule (4), or in
some neural factor that controls the chro-
matic signal at a level beyond that of the
photoreceptors (21). The original version of
the spectral proximity hypothesis failed to
reliably predict behavior, not because the
concept was wrong but because it wrongly
assumed that there was a fixed L pigment
common to all normal and deuteranoma-
lous people alike (22). In truth, relative
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shifts among the pigments are what account
for differences in behavior. For example,
participant 189 had the poorest color vision
of all the deuteranomalous men, yet he has
differences in both exons 2 and 3 as does
participant 028, a person with only a mild
defect (Fig. 1C). In participant 028, the
functional changes between two genes are
segregated, so that the sequences that spec-
ify spectral shifts toward the red are assem-
bled in one gene and those that shift it
toward the green are in another gene. These
yield pigments with a spectral separation of
about 8 nm. In contrast, participant 189 has
the long-wave redward-shifting exon 2 in
his first gene but it is paired with the green-
shifting exon 3. The long-wave exon 3 is in
his downstream genes. The pigments pro-
duced by this gene combination are close in
spectral sensitivity, hence his very poor col-
or vision.
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