tion in the presence of apoptotic stimuli may
lower the anti-apoptotic threshold of tumors
to provide a more effective treatment against
resistant forms of cancer. Additionally, the
inhibition of NF-kB function in association
with TNF treatment may broaden the limited
ability of this cytokine to function in an anti-
tuMor manner.

Note added in proof. Wu et al. (18) recent-
ly demonstrated that NF-kB blocks apop-
tosis in B cells.
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Suppression of TNF-a~Iinduced
Apoptosis by NF-xB

Daniel J. Van Antwerp, Seamus J. Martin,* Tal Kafri,
Douglas R. Green, Inder M. Vermar

Tumor necrosis factor a ( TNF-«) signaling gives rise to a number of events, including
activation of transcription factor NF-kB and programmed cell death (apoptosis). Previous
studies of TNF-« signaling have suggested that these two events occur independently.
The sensitivity and kinetics of TNF-a-induced apoptosis are shown to be enhanced in
a number of cell types expressing a dominant-negative IkBa (IkBaM). These findings
suggest that a negative feedback mechanism results from TNF-« signaling in which
NF-kB activation suppresses the signals for cell death.

The relation between TNF-a signals for
NF-kB activation and apoptosis suggests that
the two pathways are independent, diverging
early in the TNF-a signaling cascade (1).
Because TNF-a—induced apoptosis is en-
hanced in the ahsence of de novo RNA or
protein synthesis (2), and NF-kB rapidly ac-
tivates target gene transcription upon TNF-«
stimulation, we investigated whether the ab-
sence of NF-kB-induced genes alone might
enhance TNF-a—induced apoptosis. To test
this hypothesis on various cell types, we gen-
erated a transdominant-negative mutant of
[kBa (3). Many signal transduction pathways
resulting in NF-kB activation culminate in a
serine phosphorylation of IkBa on residues 32
and 36 (4). Phosphorylation of the COOH-
terminal PEST sequence has been implicated
in constitutive turnover of IkBa (5). We
combined the NH,;- and COOH-terminal
phosphorylation mutants into a single
c¢DNA (IkBaM) and examined its ability to
inhibit NF-kB signaling. We then generated
stable transformants expressing IkBaM (6)
in primary mouse and human fibroblasts, a
human lymphoma cell line (Jurkat), and a
well-characterized TNF-a—resistant cell line
(T24, human bladder carcinoma) (7).
Infection with IkBaM retrovirus resulted
in a loss of NF-kB inducibility (Figs. 1 and 2).
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Each cell line represented pools of infected
cells to avoid artifacts arising from clonal
analysis. Human embryo fibroblasts (HEF) ei-
ther alone or expressing [kBaM were stimu-
lated for various time periods to examine NF-
kB inducihility (Fig. 1). Protein immunoblot-
ting (8) (Fig. 1A) shows the expression of
murine [kBaM, which migrated faster on
SDS—polyacrylamide  gel  electrophoresis
(PAGE) than the endogenous human IkBa
(4). The expression of IkBaM was only mod-
estly higher than that of endogenous IkBa,
demonstrating the abilityof IkBaM to inhibit
NF-kB. After TNF-a stimulation in hoth
control and IkBaM cells, endogenous IkBa
was phosphorylated and degraded with similar
kinetics, demonstrating that in IkBaM-ex-
pressing cell lines, the signal transduction
pathway upstream of NF-kB activation was
not blocked (Fig. 1A). IkBaM was not de-
graded, presumably because it was not phos-
phorylated. Because the IkBa gene is induced

Table 1. Annexin V-FITC flow cytometric analy-
sis of Jurkat cells stably transduced with [kBaM.
Normal or IkBaM Jurkat cells were treated with
TNF-a (100 ng/ml) for the indicated times and
stained with FITC-labeled annexin V. The cells
were then analyzed by flow cytometry as de-
scribed (74). Five thousand cells were analyzed
under each condition.

Percent annexin V

Time (hours) binding
Control kBaM
0 10.4 12.3
3 13.7 26.6
7 241 39.9
24 28.2 62.3
48 30.1 86.3
787



by NF-kB (9), inhibition of NF-xB would
result in a lack or delay of IkBa resynthesis.
Although endogenous IkBa protein was re-
synthesized in control cells (Fig. 1A), in
IkBaM cells, no new IkBa was synthesized.
The lack of IkBa resynthesis was not due to
induction of cell death because similar results
were obtained with a noncytotoxic cytokine,
interleukin la (IL-1a) (Fig. 1A). Gel mobil-
ity-shift experiments with HIV-kB site as a
probe (10) (Fig. 1B) showed that in control
HEEF cells after treatment with TNF-a or IL-
la, both the p50/RelA and (p50), dimers
could be observed, whereas little or no «B
binding activity was observed in cells contain-
ing IkBaM. Specificity for DNA binding was
tested by the use of excess wild-type or mutant
kB probe. The same extracts did not effect
binding to AP-1 or Oct-1 probes (Fig. 1, C

A Control IkBaM
Time after TNF L1 TNF Il
stim.(min): - 5 56060/~ 5 15 60 60
IxBox
ot S@=T | ooy
1.2 A SRR e A
HIV «xB probe
B
p50/RelA=
(pS0),e HW
T R R R T
AP-1 probe
C - -
1234567889101
Oct-1 probe
; WY

1234567809101

Fig. 1. Inhibition of NF-«kB in HEF cells by IkBaM. (A)
Immunoblot analysis of HEF cells stimulated with
TNF-a (10 ng/ml) or IL-1a (2 ng/ml). Lanes 1 to 5,
normal HEF cells; lanes 6 to 10, cells transduced with
IkBaM retrovirus. Cells were stimulated for the indi-
cated times, cytoplasmic extracts were prepared,
and 50 pg were analyzed by SDS-PAGE. After trans-
fer to nitrocellulose, the blots were probed with IkBa-
specific antiserum. Arrows indicate positions of en-
dogenous IkBa, its phosphorylated form, and
IkBaM. (B) Gel-shift analysis of nuclear extracts pre-
pared from the same cells as in (A) with 32P end-
labeled HIV-kB oligonucleotide probe. Samples and
lane numbers are as in (A). Lanes 11 and 12, com-
petition controls performed on the same extract
used in lane 3 (HEF cells, TNF-a, 15 min) with excess
unlabeled wild-type and mutant oligonucleotide,
respectively. (C) Gel shift of the same nuclear ex-
tracts as in (B) with the AP-1 consensus probe.
Lane 11, competition with excess unlabeled oligo-
nucleotide with the extract from lane 4. (D) Gel
shift of the same nuclear extracts as in (B) with the
Oct-1 probe. Lane 11, wild-type competition with
the extract from lane 1.
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and D). Virtually no NF-kB gel shift was
detectable upon activation in a variety of
other cell lines (Fig. 2).

Induction of apoptosis in Jurkat and mouse
embryo fibroblast (MEF) cells treated for 18
hours with TNF-a was analyzed by staining
morphology (11) (Fig. 3). Jurkat cells were
normally very resistant to TNF-a—induced
apoptosis (Fig. 3A), with only 4% showing
loss of nuclear structure. In IkBaM-expressing
cells, however, there was a pronounced in-

A MEF
Vector IkBaM
Time after TNF I TNF 1L g,'ﬁs
stim.(min): - 555 s 60 /-5 15 80 60
MM
-
-
5 8 7 8 8 10 11 12
B T24
Control | IkBaM
Time after TNF IL‘I‘ TNF 1L gr'?l:
stim. (min): - 5 15 &0 &0 = 15 60 60I—
-
-
- |
1 283 4:5 8 7 89 0 11 12
C Jurkat
Control lkBaM
Time after INF PR ™NF P “Hgo

| comp.
= 515509090 - 5 15 60 90 80

stim. (min):

¢ ﬁL'M
LER ] ‘

123 45678 9101 121314

Control

IkBaM

crease in the sensitivity to TNF-a (Fig. 3B),
with apoptosis visualized in 44% of the cells.
MEF cells showed a similar increase in sensi-
tivity to TNF-a, from 8% in normal MEF
cells (Fig. 3C) to 67% in IkBaM-expressing
cells (Fig. 3D). An early event in apoptosis is
the migration of the phospholipid phosphati-
dylserine (PS) from the inner to the outer
leaflet of the plasma membrane (12). An-
nexin V is a protein that binds specifically to
PS (13). Table 1 compares the values for

Fig. 2. Gel-shift analysis of various cell lines ex-
pressing IkBaM. Cell lines were stimulated with
TNF-a, IL-1a, or PMA plus ionomycin. Nuclear
extracts were prepared and analyzed for NF-kB
activation by gel shift with 32P end-labeled HIV-kB
oligonucleotide. (A) Cells transduced with either
empty LXSN vector or [kBaM were treated with
TNF-a (10 ng/ml) or IL-1a (2 ng/ml). Lanes 1 to 5,
control MEF cells; lanes 6 to 10, IkBaM MEF cells.
(B) T24 cells were stimulated and treated as in (A).
(C) Normal and IkBaM Jurkat cells treated with
TNF-a (20 ng/ml) or PMA (40 ng/ml) plus ionomy-
cin (1 wM). Lanes 1 to 6, control cells; lanes 7 to
12, IkBaM cells. Arrows indicate the shift (or shifts)
corresponding to NF-kB. In each instance, mu-
tant and wild-type unlabeled oligonucleotide com-
petition was performed on the 15-min TNF-a—
stimulated control sample.

Fig. 3. Cytospin analysis of apoptosis. Cells were treated with TNF-a (100 ng/ml) for 18 hours,
centrifuged onto slides, and stained with eosin-methylene blue to identify cells that had lost nuclear
structure. Colored arrows indicate cells scored as apoptotic (red), necrotic (yellow), and viable (blue). (A
and C) Control Jurkat and MEF cells, respectively. (B and D) Jurkat and MEF cells, respectively,
transduced with IkBaM. The percentage of cells identified as apoptotic is indicated in the lower right of
each panel. These values were obtained by averaging the results from two independent experiments in
which five fields per slide with an average of ~100 cells per field were counted.
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annexin V binding of control and IkBaM
Jurkat cells obtained over time in the presence
of a high dose of TNF-a (100 ng/ml) (14).
Normal Jurkat cells showed only a slight in-
crease in annexin V binding even at the
longest incubation time, from 10.4% without
stimulation to 30.1% after 48 hours. In con-
trast, the percentage of apoptotic IkBaM-
expressing Jurkat cells increased from 12.3 to
39.9% in 7 hours, culminating in over 80% by
48 hours. The data on apoptosis were con-
firmed by use of light-scatter flow cytometric
analysis (15). We further extended our results
by showing that RelA (—/—) embryo fibro-
blasts (16) were more sensitive to TNF-a—
induced apoptosis than either normal or p50
(—/—) fibroblasts (17-19).

By two independent criteria—the block of
short- and long-term induction as shown by
gel shift (Figs. 1B and 2) and the inhibition of
endogenous [kBa resynthesis (Fig. 1A)—we
have shown that IkBaM is a potent domi-
nant-negative inhibitor of NF-kB activation.
The finding that cells with a block in NF-«B
signaling are more susceptible to TNF-a—in-
duced apoptosis is consistent with observa-
tions that TNF-a cytotoxicity can be greatly
enhanced by the addition of inhibitors of
protein and RNA synthesis (for example, cy-
clohexamide and actinomycin D) (2). The
same synergy of cell death signals has also
been reported for Fas-induced cell death (20).
Fas can induce NF-kB gel-shift activity in
certain, but not all, cell types. T24, one of the
cell lines shown to be capable of Fas-induced
NEF-kB activity, is also sensitive to Fas cyto-
toxity only in the presence of inhibitors of
RNA or protein synthesis (21). We examined
the effect of Fas activation on T24 cells ex-
pressing IkBaM and observed no appreciable
cell death (18). Thus, it appears that the
molecular mechanisms of Fas- and TNF-a—
mediated cell death may be different, in that
the activation of NF-kB can induce target
gene expression that can rescue TNF-a—, but
not Fas-mediated, apoptosis.

Inhibition of NF-kB may be used by
organisms as a means of killing TNF-a—
targeted cells. Inhibitors of NF-kB activa-
tion, such as glucocorticoids (22), antioxi-
dants (23), and Cu®™ (24), may fall in this
category. Substantial therapeutic gains are
possible if natural and synthetically derived
inhibitors of NF-kB can be used in combi-
nation with TNF-a to treat conditions in
which certain cells need to be cleared, such
as cancer and bacterial and viral infection.
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