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JNitric oxide (NO) is a major messenger 
molecule in the cardiovascular, immune, 
and nervous systems. In the brain, NO is 
responsible for the glutamate-linked en­
hancement of 3',5' cyclic guanosine mono­
phosphate (cGMP) levels (1) and may be 
involved in apoptosis (2), synaptogenesis 
(I, 3), and neuronal development (1). Be­
cause NO cannot be stored in vesicles like 
other neurotransmitters, its release is regu­
lated by the activity oi the enzyme that 
makes it, NO synthase (NOS). 

To search for associated proteins that 
might alter nNOS activity, we used the yeast 
two-hybrid system (4, 5). Yeast expressing a 
fusion protein consisting of amino acids 2 to 
377 of nNOS and the GaH DNA-binding 
domain (BD) were transformed with a rat 
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hippocampal cDNA library fused to the GaH 
activation domain (AD). Screening of ~3 X 
106 clones resulted in the isolation of a cDNA 
that encodes a protein, designated PIN (pro­
tein inhibitor of nNOS), that interacts with 
nNOS (6). This interaction was specific be­
cause PIN binds to nNOS but not to distinct 
domains of another protein, the rapamycin 
and FKBP target (RAFT) (Fig. 1A). Expres­
sion of several truncated fragments of nNOS 
(7) as Gal4 BD fusions revealed that amino 
acids 163 to 245 of nNOS are sufficient for 
PIN binding in yeast (Fig. IB). This region 
lies outside of the nNOS PDZ domain, a 
protein-binding module that may target 
nNOS to synaptic structures (8, 9), and it 
does not overlap with regions of nNOS pre­
viously implicated in binding to calmodulin 
or cofactors. 

Northern (RNA) blot analysis with the 
PIN cDNA as a probe revealed an abundant 
0.9-kb transcript present at highest levels in 
the testes, intermediate levels in the brain, 
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and lowest levels in most peripheral tissues 
(10). We screened a rat brain cDNA library 
(I  I )  with the PIN cDNA and obtained a 
615-base pair (bp) cDNA that contained a 
270-bp open reading frame, preceded 87 bp 
upstream by an inframe stop codon. This 
start codon was located in a context that 
conformed to the Kozak consensus se- 
quence (12). These data revealed that the 
clone obtained in the yeast two-hybrid 
screen coded for the complete PIN se- 
quence and 25 amino acids from the 5' 
untranslated region. 

PIN is predicted to be an 89-amino acid 
protein (Fig. lC), with no recognizable struc- 
tural motifs but with numerous highly con- 
served (1 3) homologs across species. PIN has 
92% amino acid sequence identity to a hypo- 
thetical protein identified in the Caenorhab- 
ditis elegans genome sequencing project (14) 
and has 92% amino acid sequence identity to 
a Chkmydmnonm reinhardtii protein of un- 
known function recently identified as a com- 
ponent of a macromolecular complex that 
includes flagellar dynein (1 5). The search also 
identified expressed sequence tags (ESTs) 
from several species, some of which span the 
entire or nearly the entire coding sequence of 
PIN. Rat PIN displays 100% identity with the 
human and mouse sequences, 6396 with the 
Schis tosm mansoni homolog, and 62% iden- 
tity with the Arcdidopsis thaliaM homolog 
(1 6). This high degree of conservation is rem- 
iniscent of other protein families such as 
FKBP-12 (1 7), cyclophilin (18), and the 
14-3-3 families (19), and suggests that PIN 
serves important, biologically conserved 
functions. Preliminary experiments indi- 
cate that PIN associates with several other 
proteins besides nNOS (10). Thus, PIN'S 
biological functions may involve associa- 
tion with numerous proteins. 

We next examined the ability of nNOS, 
endothelial NOS (eNOS), and inducible 
NOS (iNOS) in lysates from transfected hu- 
man embryonic kidney (HEK) 293 cells (20) 
to bind to an immobilized glutathione-S- 
transferase (GST)-PIN fusion protein. Only 
nNOS specifically associated with PIN (Fig. 
2A), a result predicted by our observation that 
the PIN-binding domain of nNOS (amino 
acids 163 to 245) is absent from eNOS and 
iNOS. Lysates from nNOS-transfected HEK 
293 cells were mixed with bacterial lysates 
containing either GST-PIN or GST and then 
applied to a NOS affinity resin containing 
2',5'-adenosine diphosphate (ADP) ribose 
(20). GST-PIN bound to the resin in the 
presence of nNOS, whereas GST did not bind 
(Fig. 2B). In a blot overlay assay, radiolabeled 
GST-PIN selectively bound nNOS from ly- 
sates of nNOS-transfected, but not mock- 
transfected, HEK 293 cells (20) (Fig. 2C). 
Finally, physiologic complexes of PIN and 
nNOS were detected in rat cerebellum ex- 

tracts by immunoprecipitation with an anti- N1E-115 mouse neuroblastoma cells overex- 
body to nNOS (21) (Fig. 2D). pressing nNOS and PIN (10). We also as- 

PIN did not alter the subcellular localiza- sessed the effect of PIN on NO-dependent 
tion of nNOS in transfected HEK 293 and cGMP formation in HEK 293 cells cotrans- 

Fig. 1. lnteraction of nNOS and PIN in the yeast 
two-hybrid system. (A) Yeast was transfoned 
with the indicated Gal4 AD and Gal4 BD plasmids 
and grown on plates containing histidine. A typical 
filter lift (5) is shown in which p-galactosidase ac- 
tivity was detected by the appearance of a dark 
blue precipitate. PAD-PIN activated IacZ tran- 
scription in the presence of the pBD-NOS(2-377) 
but not control proteins derived from RAFT. p-Ga- 
lactosidase activity correlated with growth on his- 
tidine-deficient plates (10). (8) Mapping of the 
PIN-binding domain of nNOS. The Gal4 BD was 
fused to regions of NOS, and the ability of these 
proteins to interact with PIN was assayed with the 
yeast two-hybrid assay. The relative p-galactosi- 
dase activity is indicated in the column on the 
right. (C) Deduced amino acid sequence of PIN. 
Abbreviations for the amino acid residues are A, 
Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; 
I ,  Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; 
R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. 
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put is 10% of the protein loaded onto the columns. (B) GST-PIN binds to nNOS immobilized on 
2',5'-ADP-Sepharose, a NOS affinity resin. Bacterial lysates containing the indicated recombinant 
proteins were mixed with lysates from nNOS-transfected HEK 293 cells or mock-transfected cells. The 
mixture was applied to 2',5'-ADP-Sepharose, and the bound protein was eluted with 10 mM NADPH 
and detected by immunoblotting with an antibody to GST (anti-GST) (20). Samples of the bacterial 
lysates are included to show the mobilities of the different recombinant proteins. (C) GST-PIN recognizes 
nNOS in a blot overlay assay. Two cyclic AMP-dependent protein kinase A (PKA) sites were inserted 
between the GST moiety and PIN to create a GST-PIN fusion protein that was labeled in vitro with 
[~-~~P]-adenosine triphosphate (ATP) by PKA. Lysates were resolved by SDS-PAGE, transferred to 
nitrocellulose, and probed with the radiolabeled GST-fusion protein (20). The radiolabeled protein binds 
to purified nNOS and to nNOS in transfected HEK 293 cells but not in mock-transfected cells. (D) An 
antibody to nNOS specifically coprecipitates PIN. Rat cerebellar lysate was immunoprecipitated (IP) with 
1 pg of an antibody to nNOS (30) or the indicated control antibody and protein A-agarose. HA, 
hemagglutinin. The immunoprecipitates were washed (21) and eluted in SDS-PAGE sample buffer. PIN, 
the lower band, was detected by immunoblot with an antiserum to PIN (21). Molecular sizes in (B) to (D) 
are indicated in kilodaltons. The upper band is the immunoglobulin heavy chain. 
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fected with PIN and nNOS (22). These ex- 
periments revealed that PIN suppressed calci- 
um ionophore-stimulated cGMP formation 
in a concentration-dependent manner (Fig. 
3A). Transfection of PIN alone did not alter 
basal cGMP levels or cGMP levels induced by 
calcium ionophore ( 10). 

To determine whether PIN directly inhib- 
its nNOS, we examined the effect of recom- 
binant GST-PIN on nNOS activity in lysates 
of HEK 293 cells stably transfected with 
nNOS (Fig. 3B). As little as 250 nM PIN 
substantially reduced nNOS activity relative 
to the GST control, with 50% inhibition 
evident at about 1 pM. Similar quantities of 
GST had little effect on nNOS activity (10). 
A preparation of PIN lacking the GST moiety 
(23) showed a similar dose-dependent inhibi- 
tion of nNOS activity, with 50% inhibition at 
about 5 pM (Fig. 3B). This reduction in 

affinity may be due to thermal denaturation 
during preparation (23). 

We explored the possibility that PIN 
affects nNOS dimerization, which is 
thought to be essential for NOS activity 
(24, 25). The subunits of nNOS form a 
dimer that remains intact during low-tem- 
perature SDS-PAGE in the presence of tet- 
rahydrobiopterin (BH,) and arginine (25). 
In this assay, nNOS migrated as a monomer 
after incubation with concentrations of 
GST-PIN that inhibit >90% of nNOS ac- 
tivity (Fig. 4A). Incubation with GST re- 
sulted in minimal loss of dimerized nNOS. 
We next determined the apparent molecu- 
lar mass of nNOS by gel filtration. The 
320-kD nNOS dimer has been shown pre- 
viously to migrate with an apparent molec- 
ular mass of -600 kD (25). After incuba- 
tion of nNOS with GST, nNOS migrated 

1 
0 pmyc-PIN(pg) 0 0 0.5 2.5 12.5 8 40 200 1000 5000 

NOS (1.25 pg) - + + + + Concentration of PIN (nM) 

Cotransfected plasmids 

Fig. 3. Inhibition of NO generation by PIN. (A) PIN reduces NO-dependent cGMP elevation in transfected HEK 
293 cells. HEK 293 cells were transfected with a nNOS ex~ression vector and the indicated concentrations of 
pmyc-PIN (22). The pRK5 parent vector was also transfkted to adjust the total DNA quantity transfected to 
13.75 pg per experiment. In each experiment, nNOS amounts were detected by immunoblot and were 
unchanged (70). Cells were treated with 10 pM calcium ionophore A231 87 for 1 hour, and cGMP levels were 
measured by radioimmunoassay (Amersham). (B) PIN inhibits the conversion of arginine to citrulline by nNOS 
in aconcentration-dependent manner. GST-PIN (circles) and thrombin-cleaved PIN (triangles) were incubated 
with transfected cell lysates containing nNOS for 1 hour at 37°C. NOS assays were initiated by the addition of 
CaCI,, NADPH, and VHlarginine. The percentage of nNOS activity remaining is indicated relative to activity 
measurements with control proteins at the indicated final concentrations (29). Control activity levels were 
determined with either GST or thrombin-cleaved BlRK (23). 

Fig. 4. Inhibition of nNOS dimerization by PIN. (A) A 
nNOS migrates as a monomer after treatment with GST-PIN - - 5 PM 
recombinant PIN. The nNOS dimer is stable in SDS- GST 5pM 5pM - 
PAGE sample buffer but denatures and migrates at Boiled 
the expected monomeric molecular mass of 160 kD if 

+ - -  
the sample is boiled before electrophoresis (25). 
nNOS preparations from transfected HEK 293 cells Dimer + -250 
similar to those in Fig. 38 were assayed for dimeriza- 
tion by SDS-PAGE. A boiled sample is included to - L 

show the expected mobility of the nNOS monomer. -98 
Molecular sizes are indicated in kilodaltons. (B) The B Elut~on volume (ml) 
apparent molecular mass of nNOS by gel filtration is 7 8 9 10 11 12 
reduced after treatment with recombinant PIN. Sam- 
ples were resolved by fast performance liquid chro- - GST 
matography with a Superose 12 gel filtration column m- GST-PIN 
(Pharmacia). Fractions were concentrated and the 
material was immunoblotted with an antibody to 
nNOS. The column was calibrated with the following standards: thyroglobulin (relative molecular mass 
M, 670,000) 8.1 ml, gamma globulin (M, 158,000) 10.9 ml, ovalbumin (M, 44,000) 12.6 ml, myoglobin 
(M, 17,000) 14.3 ml, and cyanocobalamin (M, 1350) 18.8 ml. 

at -600 kD, whereas after incubation with 
GST-PIN, nNOS appeared at the mono- 
meric position (Fig. 4B). These data suggest 
that PIN destabilizes the nNOS dimer. 

BH, and arginine are thought to contrib- 
ute to the stability of the NOS dimer. Thus, 
iNOS dimerizes in the presence of BH, and 
arginine and monomerizes when these cofac- 
tors are removed by dialysis (24). The nNOS 
inhibitor 7-nitroindazole noncompetitively 
reduces the affinity of BH, and arginine (26) 
and causes nNOS to migrate as a monomer in 
SDS-PAGE (25). We found that neither BH, 
nor arginine alters nNOS binding to PIN in 
vitro (lo), implying that PIN may prevent 
dimerization through a mechanism distinct 
from that of 7-nitroindazole. In the SDS- 
PAGE stability assay, nNOS migrates as a 
monomer in preparations that include 7-ni- 
troindazole or that lack BH, and arginine, but 
it still migrates as a dimer in gel filtration 
assays (25). A second, SDS-sensitive dimer- 
ization domain within nNOS may permit 
dimerization in the presence of 7-nitro- 
indazole. Using the yeast two-hybrid system, 
we have recently found that the first 165 
amino acids of nNOS, which include the PDZ 
domain, can dimerize (10). This region does 
not bind to BH, or arginine but is adjacent to 
the PIN-binding site in NOS. It remains to be 
determined whether PIN regulates dimeriza- 
tion by affecting this domain or through some 
other function. 

While this report was under review, a 
screen for genes required for Drosophila 
oogenesis led to the cloning of Drosophila 
and human PIN homologs (27). In Dro- 
sophila, homozygous loss-of-function muta- 
tions are embryonic lethal (27). These 
data, along with the extraordinary evolu- 
tionary conservation of PIN and our pre- 
liminary evidence that it interacts with 
multiple proteins, suggest that it may be a 
major regulatory protein influencing nu- 
merous physiological processes. 
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DNA topoisomerases (I). Strand transfer 
proceeds through two successive transesteri-
fications as exemplified in reactions cata­
lyzed by the X integrase and by the 78 
resolvase (2, 3). A phosphotyrosyl (1, 2) or 
phosphoserine linkage (3) is formed, and a 
hydroxyl group is left on the cleaved DNA. 
This group then initiates a second transes-
terification reaction, forming a phosphodi-
ester link and resolving the protein-DNA 
complex. The second mechanism, demon­
strated in phage Mu transposition and hu-

Change of a Catalytic Reaction Carried Out by a 
DNA Replication Protein 

Marie-Frangoise Noirot-Gros* and Stanislav D. Ehrlichf 

The RepA protein of plasmid pC194 initiates and terminates rolling circle replication. At 
initiation, it forms a 5'-phosphotyrosyl DNA link, whereas at termination, a glutamate 
residue directs hydrolytic cleavage of the newly synthesized origin, and the resulting 
3'-hydroxyl group undergoes transesterification with the phosphotyrosine link. The pro­
tein is thus released from DNA, and the termination is uncoupled from reinitiation of 
replication. Replacement of the glutamate with tyrosine in RepA altered this mechanism, 
so that termination occurred by two successive transesterifications and became coupled 
to reinitiation. This result suggests that various enzymes involved in DNA cleavage and 
rejoining may have similar mechanistic and evolutionary roots. 
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