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their conformation. S i s  double cysteine mu- 
tants were constructed in a mutant of rhodou- 

Requirement of Rigid-[Body Mdion  of sin III \vliich the native cysteines at positions 
14L1. 316. 322, and 323 were replaced by 

Transmembrane Helices for Light serine (7) .  In each mutant, the position of one 

Activation of Rhodopsin cysteine (cys13" was kept constant, whereas 
the locat~on of the seco~ld cvsteine \\.as varied 
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among anlino a c ~ d  positio~ls 247 through 252 
in helix F (Fig. 1).  The  mutant opsin proteins 
xvere expressed in COS-1 cells, regenerated 
with 11-cis-retinal, and purified in dodecyl 

Conformational changes are thought to underlie the activation of heterotrimeric GT'P- maltoside (DM) detergent with an immuno- 
binding protein (G protein)-coupled receptors. Such changes in rhodopsin were explored affmity procedure (8, 9). All mutants bound 
by construction of double cysteine mutants, each containing one cysteine at the cyto- 11-cis-retinal to for111 pigments with properties 
plasmic end of helix C and one cysteine at various positions in the cytoplasmic end of similar to those of natlve rhodopsin [A,,,, -= 

helix F. Magnetic dipolar interactions between spin labels attached to these residues 498 nm and ratlo of absorbances at 282 and 
revealed their proximity, and changes in their interaction upon rhodopsin light activation 52L1 nnl (A,,,!A,,,) between 1.6 and 1.81. 
suggested a rigid body movement of helices relative to one another. Disulfide cross- Upon illu~ni~lation with light of wavelength 
linking of the helices prevented activation of transducin, which suggests the importance (X)  greater than 496 nm,  all showed an ab- 
of this movement for activation of rhodopsin. sorbance shift to 38L1 nm and subsequent ret- 

ma1 release characteristic of the native pro- 
tein (iC). 

T h e  sulfl~ydryl groups in the double cys- 
G protein-coupled receptors (GPCRs) form schemes for ~napping the rhodops~ll sequence teine mutants were derivatized with a meth- 
a superfamily that mediates the actions of onto the resol~.ed lielices have bee11 proposed anethiosulfonate spill label (Fig. 2 )  ( 1  1 ) .  
extracellular signals as di~verse as light, (3 .  5). Site-directed spill labeling (SDSL) T h e  double cysteine mutants so derivatized 
odorants, peptide hormo~les ,  and neuro- studies reveal that isotneri:ation of the 11-cis- were desigi-iated as 139R1-248R1 through 
transmitters (1 ) .  Activation of these re- retinal chrot~~ophore by light leads to reorga- 139R1-252R1. 
ceptors is assunled to require protein con-  nixition of the tertiary contact surfaces of Static tnagnetic dipolar interactions be- 
fo r~na t io~ la l  changes. Unders t and~ng  the  lielices C and F, as well as to changes in the tween tn70 nitroxide labels in an ~unoriented 
nature of these structural changes is cen- structure of cytoplas~nic interhel~cal loops sample lead to spectral line broadening, and 
tral to understanding the  tnolecular mech- that are ltnonm to interact with transducin thus a decrease in signal in~ensity,  for sepa- 
anism of G P C R  act i~ .a t ion.  (3).  These results n-ere in te i~reted in terms of rations less than about 25 .A. Electron para- 

Rhodopsin is one of the best characterized 
GPCR systems. Secondary structure models 
have been proposed oil the basis of biochem- Fig- 1. A secondary A B C D E F G  
ical, biophysical, and mutagenic data (Fig. 1 )  Of rho- 
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magnetic resonance spectra of the doubly la- 
beled mutants were obtained in the dark and 
after photoactivation to produce the metarho- 
dopsin I1 state. In each case, the sample was 
frozen after preparation of the desired photo- 
chemical state at room temperature. The 
spectra were recorded in frozen solutions to 
eliminate effects resulting from differences in 
nitroxide mobility. Decreases in spectral line- 
width were observed after photoactivation for 
139R1-248R1, 139R1-251R1, and 139R1- 
252R1. An increase in linewidth after photo- 
excitation was observed with 139R1-250R1. 
whereas relatively little change was seen for 
139R1-249R1. No such changes were ob- - 
served for the single mutants after photo- 
activation. These changes upon rhodopsin 
photoactivation indicate an increase in dis- 
tance between nitroxides in the pairs 

Residue R1 

139R1-248R1, 139R1-251R1, and 139R1- 
252R1; a decrease in distance between 
those in 139R1-250R1; and little change in 
distance between those in 139R1-249R1 
(12). 

Interspin distances between pairs of ni- 
troxides can be estimated by simulation 
techniques, and that approach was used here 
to obtain approximate ranges of interspin 
distances before and after photobleaching 
(1 3). In the dark state, the average position 
of the nitr~xide in 139R1 lies in the range of 
12 to 14 A from those in 248R1 and 251R1 
and 15 to 20 A from those in 249R1,250R1, 
and 252R1. After photoactivation, the dis- 
tances from 139R1 to 248R1, 251R1, and 
252R1 increased to near the Jimit for detec- 
tion of interaction (23 to 25 A), the distance 

from 139R1 to 250R1 decreased to 12 to 14 
A, and that from 139R1 to 249R1 changed 
little. These results demonstrate the proxim- 
ity of the cytoplasmic ends of helices C and 
F in the rhodopsin structure and indicate a 
relative displacement of the helices after 
photoactivation. 

Further support for proximity between cys- 
teine pairs in the double cysteine mutants was 
obtained from their ability to form disulfide 
bonds. Oxidation of the mutants was done 
with the mild oxidizing reagent copper- 
phenanthroline, followed by V-8 proteolytic 
digestion and analysis with SDS-polyacryl- 
amide gel electrophoresis (PAGE) (Fig. 3). 
Disulfide cross-links were formed by all double 
mutants except 139C-252C and the wild-type 
rod outer segment (ROS) rhodopsin ( 14). 

Fig. 2. Rigid lattice (1 83 K) X-band electron para- 
magnetic resonance spectra for the, spin-labeled 
double cysteine mutants. Spectra are shown for 
the dark state (red trace) and for the metarhodop- 
sin I I  state (yellow trace), produced by photoacti- 
vation. Microwave power was 50 pW in a loop- 
gap resonator with a field modulation of 1 G. 

Fig. 3. V-8 proteolysis and SDS- 
PAGE analysis of oxidized double 

RXI ISQC '"OC IBOC 'lDC '7 '= 
M .  24% 260C I 1 C  2S2C cysteine rhodopsin mutants. Sam- 

da'k (rhodo'psin-to-V- ratio of 10 : 1) for 3 hours at rmm temperature. Before SDS-PAGE (1 3% gel), samples 
were solubilized for 1 hour in an SDS gel loading buffer containing either 2.5 mM N-ethylmaleimide (even lanes) 
or 2.5 mM DTT (odd lanes). Proteins were visualized by silver staining (23). The smear observed forthe mutant 
rhodopsins results from heterogeneous glycosylation. Molecular size standards are indicated by M. 

Fig. 4. Transducin activation by 
double cysteine mutants in the re- 
duced state [I mM DTT (pH 6)] 
and after oxidation with copper- 
phenanthroline. Transducin acti- 
vation was measured by the rate 
of complex formation between 

and guanosine 5'-0-(3'- 
thiotriphosphate) (GTP-y-S) in a 
fluorescence assay (24) at 20°C. 
(A) Transducin activation by re- 
duced double cysteine mutants. 8 B 
Samples were incubated with 5 5 0.96' I 
mM DTTfor 1.5 to 2.5 hours and 0 500 1000 1500 f the assay buffer contained 1 mM 8 DTT. (B) Transducin activation by = 1.12 
oxidized double cysteine mutants 
of rhodopsin (22). For each mea- 
surement, rhodopsin samples 
were bleached and added, to a 
final concentration of 5 nM, to a 1.04 
stirred cuvette containing 700 pI 
of 250 nM transducin in 0.01% 
DM, 10 mM tris (pH 7.1), 100 mM 1 

NaCI, and 2 mM MgCI,. After 5 
min, GTP-y-S was added to a fi- 0.96 
nal concentration of 5 pM (at 0 500 1000, 1500 
time = 0). The initial rates of trans- Time (a) 
ducin activation for each mutant are given as a percentage of that obtained with wild-type ROS rhodopsin (in 
parenthesis) and were obtained from the slope of the fluorescence measurements in the first 60 s after 
addition of GTP-y-S. 
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To investigate the functional conse- 
quences of disulfide bond formation, we 
studied activation of transducin (GT). All 
double cysteine mutants activated GT un- 
der reducing conditions [ l  mM dithiothrei- 
to1 (DTT), pH 6.01. However, after oxida- 
tion, only those samples that did not form 
disulfide cross-links activated GT (Fig. 4) 
(15). The inability of the disulfide cross- 
linked mutants to activate GT implies a 
functional importance for the helix move- 
ment detected by the spin labels. 

Our results can be interpreted in terms of a 
simple rigid body motion of helix F relative to 
helix C (Fig. 5). The light-activated confor- 
mational change appears to involve rigid body 
motion of helix F relative to C, rather than 
secondary structural changes, because the mo- 
bility of the spin labels on the outer surfaces of 
helices C and F change little after activation, 
whereas those on the interior surface become 
more mobile as a result of decreased tertiary 
interactions (3). The rotational-translational 
motion indicated in the mcdel moved 250R1 

closer to 139R1, but increased the distance 
between all other pairs, as was observed. 

Helices C and F flank the ionone ring of 
retinal, which makes contact with the bulky, 
highly conserved residue Trp265 in helix F 
(16). Trp265 may serve to transmit chro- 
mophore motions to helix F, resulting in the 
structural change at the cytoplasmic face re- 
ported here. It is noteworthy that an outward 
movement of helix F would result in an in- 
creased exposure of Arg'35, a residue con- 
served throughout the GPCR family and re- 
quired for GT binding and activation (1 7). 

As a consequence of F helix motion, 
changes would be expected in the important 
E-F interhelical loop recognized by GT (1 7) 
and rhodopsin kinase (18). Movement in the 
topologically similar membrane protein bac- 
teriorhcdopsin is also largely confined to helix 
F (19), which suggests that motion of this 
helix upon activation may be a common trait 
shared among membrane-bound retinal pro- 
teins and perhaps in all GPCRs. 
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