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Climatic and Hydrologic Oscillations
in the Owens Lake Basin and
Adjacent Sierra Nevada, California

Larry V. Benson, James W. Burdett, Michaele Kashgarian,
Steve P. Lund, Fred M. Phillips, Robert O. Rye

Oxygen isotope and total inorganic carbon values of cored sediments from the Owens
Lake basin, California, indicate that Owens Lake overflowed most of the time between
52,500 and 12,500 carbon-14 ('4C) years before present (B.P.). Owens Lake desic-
cated during or after Heinrich event H1 and was hydrologically closed during Heinrich
event H2. The magnetic susceptibility and organic carbon content of cored sediments
indicate that about 19 Sierra Nevada glaciations occurred between 52,500 and 23,500
14C years B.P. Most of the glacial advances were accompanied by decreases in the
amount of discharge reaching Owens Lake. Comparison of the timing of glaciation with
the lithic record of North Atlantic core V23-81 indicates that the number of mountain
glacial cycles and the number of North Atlantic lithic events were about equal between

39,000 and 23,500 "“C years B.P.

Evidence of rapid oscillations in air and sea
surface temperatures during the last glacial
period have been recognized in ice cores
from Greenland (1) and sediment cores from
the North Atlantic (2, 3). Layers of lithic
fragments rich in carbonate debris (Heinrich
layers) have been found in sediment cores
from the temperate North Atlantic and ap-
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pear to be linked to the dynamics of the
Laurentide Ice Sheet and other Northern
Hemisphere ice sheets by the discharge of
icebergs into the North Atlantic (3=5). The
last four Heinrich events occurred at the end
of progressive decreases in sea surface and air
temperatures (Dansgaard-Oeschger cycles)
and were followed by rapid warmings.
Several authors have attempted to link
proxy records of climate change from other
areas of the world to Dansgaard-Oeschger
cycles and Heinrich events (6). In particu-
lar, it has been suggested that alpine glaciers
in the Rocky Mountains advanced to their
terminal areas up to several thousand years
before a Heinrich event and retreated soon
thereafter (7). However, limitations in
chronology and sampling resolution have
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made it difficult to demonstrate that North
Atlantic climatic oscillations were synchro-
nous with climatic and hydrologic oscilla-
tions in other regions. Here we present con-
tinuous, well-dated, high-resolution proxy
records of climate change in the Owens Lake
basin and compare them with the North
Atlantic lithic record documented in core
V23-81 (8).

Owens Lake is located in the Great
Basin of the western United States be-
tween the central Sierra Nevada and Inyo-
White mountain ranges (Fig. 1). Cool-
season orographic precipitation in the Si-
erra Nevada, mostly from North Pacific
sources, supplies >99% of the runoff
reaching Owens basin (9).

Sediment cores OL90-1 (length, 32.75
m) and OL90-2 (28.20 m) were obtained
from the Owens Lake basin in 1990 (Fig. 1)
(10). Age control for OL90-2 was based on
26 accelerator mass spectrometry (AMS)
MC determinations made on the total or-
ganic carbon (TOC) fraction of the cored
sediment (Fig. 2) (I11). Age control for
OL90-1 was obtained by matching 30 mag-
netic susceptibility (x) features common to
both cores. The OL90-2 'C age—depth
polynomial was then applied to OL90-1. A
continuous set of sediment samples, 5 to 6
cm in length, was taken from the two cores.
Total carbon (TC), total inorganic carbon
(TIC), and 880 values were determined on
each sample (12).

To determine if abrupt changes in cli-
mate affected the hydrologic balance of the
Owens Lake basin, we examined the §'80
and TIC records (Fig. 3). The 8O value
(13) of a lake represents a balance between
amounts and 80 values of water input to
and lost from a lake. When Owens Lake



overflowed, 8'%0 was primarily a function
of the outflow:inflow ratio. When the resi-
dence time of water in the Owens Lake
basin approached zero, the 8'0 of Owens
Lake approached the 8'%0 value of inflow
(calcite precipitated from a 15°C lake in
which the outflow:inflow ratio approaches
unity would have a 8'%0 value of ~15 per
mil). Under steady-state conditions, the
3180 value of a hydrologically closed Great
Basin lake would be highly enriched (cal-
cite precipitated from a 15°C lake would
have an 8'%0 value of ~30 per mil) (14).

Between 52,500 and 15,500 years before
present (B.P.), 8'0 values determined on
the TIC fraction of Owens Lake sediment

Fig. 1. Location map of the Owens Lake basin
(dash-dotted line). Cores OL90-1 and -2 were tak-
en within 200 m of each other.
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Fig. 2. AMS '“C age control for core OL90-2. The
14C age polynomial was not fit to '“C ages of
samples from depths D > 25 m. A hiatus in the
sediment record (dashed line) occurs at a depth of
6 m. Ages have not been calibrated and are re-
ported in '“C years B.P.

are generally low (<22 per mil) (Fig. 3),
indicating that Owens Lake overflowed
most of this time (15). Isotopic values are
relatively low between 40,000 and 30,000
years B.P., reflecting a climate that was
extremely wet (low values also occur at
28,500 and 26,500 years B.P.). Before and
after the interval characterized by extremes
in 8'80 minima, 8'%0 values reflect drier
climates: For example, between 52,500 and
40,000 years B.P. there are several 'O
maxima that denote brief periods of inter-
mittent closure (C; to Cg). Owens Lake
receded below the elevation of the core site
and may have desiccated between <15,500
and 13,700 years B.P. (16). An abrupt de-
crease in 8'%0 at 13,300 years B.P. culmi-
nated in extremely low 3'80 values at
13,000 years B.P., indicating a profound
increase in wetness.

Chemical weathering of granitic Sierran
rocks results in an Owens River composi-
tion dominated by Na, Ca, and HCO,™ (9).
When Owens Lake was closed, all dissolved
Ca (and an equal amount of CO;*") enter-
ing Owens Lake precipitated as CaCOs;,.
During overflow, some Ca and HCO,~
were lost from the basin; the greater the
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outflow:inflow ratio, the greater the loss of
Ca. If influx of detrital silicates remained
constant, increases in the fraction of
CaCO, (TIC) should have paralleled in-
creases in 8'%0. Thus, comparison of TIC
and 8'%O records should allow us to deter-
mine times of uneven accumulation of de-
trital silicates.

First-order trends in TIC and 8'%0O par-
allel each other between 40,000 and 26,000
years B.P., but only a few TIC and §'%O
maxima are coeval. Between 52,500 to
40,000 and 26,000 to 15,500 years B.P.,
variations in TIC and 8’0 are not syn-
chronous, and the percentage of TIC is
typically low, indicating that detrital sedi-
ments have obscured the TIC signal (Fig.
3). A combination of scanning electron
microscopy, x-ray ditfraction, and grain-size
data indicates that the detrital material is
rock flour (fine silt) mainly transported to
the Owens basin by glacial meltwater (17).

Magnetic susceptibility (x) provides ev-
idence for the timing of glaciation. The x of
Owens Lake sediment derives from the
postdepositional alteration of detrital iron-
bearing minerals (for example, magnetite
and biotite) to greigite (Fe,S,) in anoxic
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Fig. 3. The §'®0, TIC, TOC, and x records from cores OL90-1 and -2 compared with the lithic record
from North Atlantic core V23-81 for the period 52,500 to 12,500 years B.P. Greenland Dansgaard-
Oeschger (D) warm events and Heinrich (H) events are indicated. Selected maxima in 880, TIC, x, and
minima in TOC are shown in black; maxima in TOC and lithics (from V23-81) are indicated in gray. Lithics
are measured in number of grains >150 um in size per gram of sediment. Trends in increasing 30
(decreases in wetness of the Owens Lake basin) are indicated by lines I, to |,; Sierran glacial advances
(peaks in x) are labeled A, to A, g; Sierran glacial recessions (peaks in TOC) between 39,000 and 24,000
14C years B.P. are labeled Rq to R, 4. Periods of hydrologic closure of Owens Lake before 40,000 years
B.P. are labeled C, to Cg4. Correlations among the OL90-1 and -2 records are indicated by thin solid
lines. Dashed lines indicate possible correlations between lake size minima and lithic events.
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pore waters of Owens Lake (18); x, there-
fore, should act as an indicator of the in-
tensity of glacial erosion in the central Si-
erra Nevada. New cosmogenic *°Cl age es-
timates of Sierra Nevada moraines (19),
together with other age estimates of Tioga
glaciations (20, 21), demonstrate that max-
ima in x occur during advances of Sierran
glaciers.

The oldest series of x events (between
52,500 and 40,000 years B.P.) may indicate
late-stage advances of the Younger Tahoe
glaciation (21, 22). The eight oldest glacial
advances (A, to Ag) occurred when rela-
tively heavy 3'80 values indicate that the
lake was intermittently closed (C; to Cg),
suggesting that the climate was cold and
relatively dry (Fig. 3). Between 40,000 and
23,500 years B.P., Owens Lake also experi-
enced closure during glacial advances A,
to A, A, and A, g The Tioga glaciation
also occurred during a relatively dry period
(23,500 to 15,500 years B.P.). There are
moderate peaks in x between 40,000 and
27,500 years B.P. that indicate the advance
of an as-yet-unnamed series of minor gla-
ciers during a relatively wet interval (23).
The moraines resulting from these minor
glacial advances were probably overridden
during subsequent intense periods of early
Tioga glaciation between 23,500 and
21,500 years B.P.

Between 52,500 and 23,500 years B.P.,
maxima in x are coincident with minima
in TOC (Fig. 3). The TOC minima likely
resulted from decreases in biological pro-
ductivity and dilution of the TOC fraction
with glacially derived silt (24). For exam-
ple, TOC concentrations were reduced to
<0.3% during the Tioga glaciation. Max-
ima in TOC mark the occurrence of 11
glacial recessions (R, through R,y) be-
tween 39,000 and 24,000 years B.P. (Fig.
3).

One of our purposes was to determine
whether records of climate change from
the Owens basin could be objectively
linked to North Atlantic climate events.
At least 9 of the 11 glacial recessions
discussed above appear to have occurred at
the same time as lithic events recorded in
V23-81 (Fig. 3). In addition, H2 occurred
immediately after the most intense period
of Tioga glaciation, and H1 may have oc-
curred near the end of the Tioga. It is tempt-
ing to conclude that Sierran glacial reces-
sions were coeval with periods of accelerated
iceberg discharge to the North Atlantic;
however, *C age controls for OL90-2 (Fig.
2) and V23-81 do not permit this conclu-
sion (25).

What can be said is that the number of
advances and retreats of Sierran glaciers is
almost identical to the number of iceberg
discharge events. Air temperature strongly

748

affects the size of alpine glaciers. Lithic
and foraminiferal records from V23-81 in-
dicate that periods of increased iceberg
discharge occurred near the ends of cool-
ing cycles (5). It is, therefore, plausible to
suggest that variability in air temperature
over the Northern Hemisphere may have
linked Sierran glacier cycles with iceberg
discharge cycles in the North Atlantic.
Whether different regions in the Northern
Hemisphere experienced synchronous
changes in air temperature remains an un-
answered question.

A comparison of the Owens Lake hy-
drologic-balance proxy (3'%0) with the
North Atlantic lithic record does not in-
dicate a high degree of correlation (Fig. 3)
(26). A dry period occurred during or after
H1, and the Owens Lake basin was rela-
tively dry during H2. Between 37,000 and
21,000 years B.P., there are three intervals

(I, = 36,500 to 28,500; I, = 28,000 to -

26,500; and I; = 25,000 to 20,500 years
B.P.) where 8'%0 values increase in a
more or less regular manner, indicating
progressive decreases in the frequencies
and amounts of overflow. Increases in lith-
ic deposition in the North Atlantic paral-
leled 8'%0 increases during 1, [,, and the
last half of I;, but increase in iceberg
discharge was a more discontinuous pro-
cess than decrease in wetness of the
Owens Lake basin. Only-a few lithic max-
ima occur at the same time as 830 max-
ima, and there are numerous millennial-
scale oscillations in the §'%0 record that
have no corollary in the lithic record.

The results of this study indicate that
before the Tioga glaciation, about 19 glacial
cycles occurred with an average frequency
of about 1500 years (27) and that glacial
advances and retreats within the Tioga oc-
curred with a frequency of <1000 years.
Oxygen-18 and x data suggest that the old-
est part of the Owens Lake record (52,500
to 40,000 years B.P.) was characterized by
relatively intense periods of glaciation that
were accompanied by reductions in dis-
charge to Owens Lake.

During the middle part of the record
(40,000 to 28,000 years B.P.), x maxima
are relatively small, indicating that glacial
advances were confined to high eleva-
tions. Oxygen-18 and x data suggest that
glacial advances in this part of the record
also were accompanied by reductions in
discharge to Owens Lake. The Tioga gla-
ciation, which occurred during the most
recent part of the record (28,000 to 15,500
years B.P.), was terminated by a severe
drought that occurred during or immedi-
ately after H1. Comparison of the timing
of glaciation with the lithic record of
North Atlantic core V23-81 indicates that
the number of mountain glacial cycles and
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the number of North Atlantic lithic
events were about equal between 39,000

and 24,000 years B.P.
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Chronology for Fluctuations in Late Pleistocene
Sierra Nevada Glaciers and Lakes

Fred M. Phillips, Marek G. Zreda,* Larry V. Benson,
Mitchell A. Plummer, David Elmore, Pankaj Sharma

Mountain glaciers, because of their small size, are usually close to equilibrium with the
local climate and thus should provide a test of whether temperature oscillations in
Greenland late in the last glacial period are part of global-scale climate variability or are
restricted to the North Atlantic region. Correlation of cosmogenic chlorine-36 dates on
Sierra Nevada moraines with a continuous radiocarbon-dated sediment record from
nearby Owens Lake shows that Sierra Nevada glacial advances were associated with

Heinrich events 5, 3, 2, and 1.

During the last glacial period, the climate
in the North Atlantic region was character-
ized by a sequence of quasi-cyclical fluctu-
ations (I). Combined ice core and marine
sediment core evidence indicates that dur-
ing periods ranging in duration from about
500 to 2000 years the climate became pro-
gressively colder. The maxima of these
Dansgaard-Oeschger cycles were often
marked by the expulsion of large numbers of
icebergs from the ice caps surrounding the
North Atlantic (Heinrich events) (2). The
iceberg expulsions were rapidly followed by
abrupt warming. The cold episodes culmi-
nating in Heinrich events have been pos-
tulated to be the cause of mountain glacier
advances in western North America (3)

and elsewhere (4).
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This hypothesis has proved difficult to
test, in large part because of the difficulties
in dating moraines by *C and other con-
ventional approaches. Cosmogenic nuclide
methods (5) can be used to directly date
moraines (6, 7), but various uncertainties
(8, 9) render tenuous direct chronological
comparisons with millennial-scale events
such as iceberg discharges.

An alternative approach that circum-
vents these difficulties is to investigate con-
tinuous and datable sedimentary records in
environments associated with mountain
glaciers. Although the sediment-based ap-
proach provides a nearly continuous record,
it must use indirect proxies for glacial ex-
tent. Here we test glacial proxies in a sedi-
ment record from Owens Lake, California
(10), by comparing the *C chronology of
the proxies with direct *6Cl ages of Sierra
Nevada moraines.

The Owens River drains the eastern
flank of the Sierra Nevada (Fig. 1). All of
the major valleys originating from the Si-
erra Nevada contain late Pleistocene mo-
raine complexes showing that the altitude
of the equilibrium line was ~1000 m lower
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Resour. Invest. Rep. 86-4148 (1986)]. The poor cor-
relation may also result from the timing of carbonate
precipitation. Precipitation is favored by warm water
temperature and high concentrations of Ca?* and
CO,2~. These conditions occur in the late autumn
when overflow is at a minimum and 380 values are
high and not necessarily representative of average
overflow conditions.

27. There are about 19 glacial cycles between 52,500
and 23,500 years B.P.; however, some of the older
Tahoe advances (for example, A,) may consist of
more than one glacial cycle.
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(11). The characteristics of sedimentation
in Owens Lake should therefore have been
sensitive to changes in the magnitude of
discharge and type of sediment load pro-
duced by glaciation, particularly the re-
lease of large amounts of rock flour by
glacial meltwater. Benson et al. (10) used
increases in magnetic susceptibility and
decreases in inorganic carbon, organic car-
bon, and carbonate §'80 as indicators of
glacial advance.

We have used cosmogenic **Cl buildup
(12) to date late Pleistocene moraines in
four drainages (Fig. 1). Two of the drain-
ages, Bishop Creek and Little McGee
Creek, are tributary to the Owens River.
Bloody Canyon drains into Mono Lake
and is about 20 km north of the headwa-
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Fig. 1. Location of Owens River drainage basin
and valleys where moraines were dated with the
use of cosmogenic %¢Cl. CH = Chiatovich Creek,
BC = Bloody Canyon, LMC = Little McGee
Creek, and BpCr = Bishop Creek.
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