
Optical Triggers of Protein Folding 

Sparkeel by recent iievelopments in the the- 
ory of protein folding ( 1  ), cxperi~lle~ltalists 
have been ileveloping new methods for stud- 
ies on the submillisecond time scale ( 2 ,  3).  
Optical techn~yues have great potentla1 111 

this area because of the many d~fferent ways 
that laser pulses can be employed to trigger 
foliling. Torbjiirn Pascher et  01. (4 )  describe a 
method that uses a photoinduced electron 
transfer reaction to initiate the foldi~ln of 
reduced cytochrome c. T h e  idea takes ad- 
vantage of the di f fere~~cc in stabil~ty of the 
oxiilizcil anil reduceil prote~ns. Optical esci- 
tatlon of an Ru". colnples [RLI(?,~'-hipyri-  
dine) j 2 + ]  produces a long-lived excited state 
that reduces the osidi:ed heme of cyto- 
chrome c in less than 1 ps. R e d ~ ~ c t ~ o n  of the 
unfolJed osidi:ed nrotein initiates the folil- 
111g of the more stable reduced protein. 

This ~nethoi l  is conceptually si~nilar to 
the triggering t e c l ~ n i c ~ ~ ~ e  used by Jo~ les  et  rtl. 

( 2 ) ,  in which folding of reduced cyto- 
chronle c nas  mitiated hv tIhotodissociation , 

of the heme-carbon monoxide co~llplex 
(Fig. 1). B e c a ~ ~ s c  there is a larger differe~lcc 
in stahil~tv betneen oxiilircd and reduced 
cytochromc c than bet\veen reduceel cyto- 
ch ro~ne  c and. its CO cornnlex, the electron 
transkr mcthoil per~nits ohservat~on of fold- 

Fig. 1. Comparison of optical triggers for the fod- 
ng of reduced cytochrome c ,  In the experment of 
Pascher et a/ .  (4), the heme Iron In the initial dena- 
tured state of cytochrome c is ox~dized. Axal i -  
gands are hstdine 18 and histidine 33 (or possby 
h~stidine 26), as shown by nuclear magnet~c res- 
onance measurements (70). Electron nject~on re- 
duces the heme Iron. In the exper~ment of Jones 
et a/. (2), dssocation of CO froln the reduced 
heme produces a high-spn, f~ve-coordinate com- 
plex. Jones et a/. observed optical absorpt~on 
changes begnnng at hundreds of nanoseconds 
and Inodeled the changes in the time-resolved 
spectra as aris~ng from complex formation with 
the methion~nes 65 and 80 (rate constants for 
binding and dssociaton of 2.5 x 10's ' and 2.5 
X 10% '1). and with h~stidines 26 and 33 (rate 
constants for bndng and dssocaton of 2.5 x 
10' s ' and 6 x 10' s ' )  (2). 

ing uncler loner denaturant co~lcc~l t ra t ions  
(Fig. 2) (5). T h e  pon.cr of these triggering 
t e c h n i u ~ ~ c s  is that thev can be used to stuiiv 
events in the largely unexplored nanosec- 
ond-microsecond time regime. 

Pascher e t  trl. observed an  -40 ILS nrocess 
8 L 

by optical absorption, which they pointed 
out is consistent \\-it11 the kinetics of in- 
tramolecular ~nethioninc and histidine hinil- 
ing described in detail by Jones et  rtl. (2 ,  6 ) .  
They f~lrther suggested that the -40-ps 
phase c o ~ ~ l d  also correspond to the collapse 
of the unfolded to compact de- 
natured structures (2 ,  4) .  Bcca~~sc  of the 
si~ll~larity of the two opt~cal  triggering meth- 
ods, we call nrovidc a test of this hvnothesis , L 

by measuring tryptophan fluorescence fol- 
lowing phutodissociation of the CO cornplcs 
~ lnder  a l ~ l ~ o s t  iclentical solvent conilitions. 
Cytochrome c co~ltains a s~ngle  tryptophan 
a t  nosition 59, about 40 residues distant 
along the  chain trorn the  heme. T h e  tryp- 
top l~an  fluorescence ix weakly quenched by 
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Fig. 2. Fluorescence-detected guanidine hydro- 
chloride unfodng curves for oxd~zed cytochrome 
c (dashed), reduced cytochrome c (continuous), 
and reduced cytochrome c under one atmo- 
sphere of CO (dash!dot) at 40°C pH 6.5 to 7.0. 
Curves are taken froln (2) and (4). 

cxcltatlon energy transfer to the heme 111 

the  unfolded state. It is almost comnletelv 
q ~ ~ e n c h c d  in the native conformation and 
at h e m e - t r y 1 1 1  distances less than 
about 2.0 nm. as \vould occur in colnoact 
states of cytochrome c (7). Because the 
tryptopha~l fluorescence should decrease by 
at least 10-fold upon forming colnpact 
structures, it provides a very sensitive probe 
of polypeptide collapse. 

W e  searched for fluorescence chal~ges 
followinir na~loseco~ld r'hotodissociation of 

u 

the CO c o ~ n p l e s  over a range of guanidine 
hydrochlor~de concentrations (3.5 h4 to 5.0 
hi). W e  ohtamed the si~llvle r e s ~ ~ l t  that 
there is no  ohscrvable fluorescence change, 
even at the  lo\vest denaturant concentra- 
tion, n h ~ c h  strongly favors f'oliling 111 the  
absellce of CO (over 99.99% native a t  eyui- 
librium) (Fig. 3) .  Thus, using this probe, 
there is no  evidence for collapse to colnpact 
structures at any t1111e bet wee^^ 10 11s and 
the  completion of CO rcbi~ldillg a t  10 ms. 

This result might he uncspccted. Re- 
~noving a ligand by photoil~ssociation or 
reducing the  net charge on the  heme trorn 
+ 1 to 0 by clectrol~ transfer makes the 
heme   no re hydrophob~c. Both optical trig- 
gers are therefore expected to increase the  
interaction of the  larnc h v d r o ~ h o b ~ c  hcnlc 
nit11 ~ loncoord i~ la t i~ lg  amino acid rcsiilues, 
as well as alter the  hillcli~lg of ligancls from 
the polypeptiile c h a ~ n  (Fig. 1) .  Although 
these changes stab111:e the llatlve structure 
relative to ~111b1ileJ denatured structures at 
cil~~ilibrium (Fig. 2),  it is not clear that they 
could also cause collapse of the  unfolilecl 
11oly11eptiJe before formation of the native 
structure [~vhich begins a t  tens of millisec- 
onds (4)]. In  contrast, changing the solvent 
from " g ~ c ~ d "  to "poor" by diluting a c11cn1- 
ical denaturant strengthens the  hydropho- 
bic interaction alllong lnanv amino acid 
res~clues. If these i~~teract ions  are sufficient- 
ly strong, they call d r ~ v e  r a C d  collapse to 
colnpact J e n a t ~ ~ r e d  states (for esanlplc, 
"molten globule") ( 1 ,  8).  Our  results indi- 

Fig. 3. Fluorescence Intensity following photodis- ,g 40 
soc~ation of CO from unfolded cytochrome c (3.75 2 
M GuHCI. 0.1 M potassium phosphate, pH 7.0. f 
20°C). Under these condit~ons, 55O6 of the mole- 'i 30 -?----#*, - - - -  *-?z,:,'.~.~*-..-....~ - - - - - - -  
cules are unfolded before photodissociat~on, 
while 0.059.6 of the molecules are unfolded In the $ 
absence of CO at equilibrum (Fig. 2). Fluores- $ 20 

-_T__::: 
cence Intensity at 360 nm, using 266 nm excta- 5 1V6 lo.4 10" 
tion with a single (-5 ns) pulse from a Nd:YAG Time (s) 
laser, was lneasured as a function of the time 
delay after 375% photodssoc~aton with the 532-nm harmonic of another Nd.YAG laser. Integrated 
ntensity was measured w~th a photomultipl~er tube and digitizng scope. T~me between photodissoca- 
tion pulses was 400 seconds, n order to permit complete recovery of the equibr~um dstribution of 
unfolded states with CO bound, native states, and colnpact states with CO bound. Native-l~ke states 
with CO bound rapidly convert to the nat~ve state after CO photolysis, but recover slowly as a result of 
the slow replacement of methion~ne w~th CO. Th~s process does not contribute to the fluorescence 
sgnal because the tryptophan fluorescence 1s quenched In both states. Each pont 1s the result of 
smoothng data froln s~ngle exctaton and probe pulses for each tme delay. 
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cate that the  changes in heme-protein in- 
teractions produced by the  optical triggers 
are insufficient to clo this. These optical 
triggers do, however, provide a unique op- 
portunlty to investigate the nanosecond- 
~nicrosccond dynamics of the  unfolded pro- 
tcin prior to surmounting the free energy 
barrier that separates the  ~ ~ n f o l d e d  struc- 
tures from the native state (9) .  
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Response: In our report about the electron- 
transfer (ET)-in~tiatcd foldi~lg of ferrocyto- 
chrolne c (cyt c") ( I  ), we noted rapid changes 
in the vis~ble absorption spectrum corre- 
sponding to a process with a tillle constallt of 
-40 ua. We indicated that this observation 
was co~lsistent with studies of cyt c" f'oliling 
in~tiatcd by CO d~ssociation \vhere the fast 
dy~lalnics were attributed to cha~lgcs in heme 
ligation (2). We also suggested that these 
dynamics might correspond to the collapse of 
the protein into a compact denatured state, as 
has bee11 proposed for apo~nyo~lobin on the 
basis of l a s e r - t e r n ~ e r a t ~ ~ r e - i ~ ~ ~ ~ ~ ~  measurements ., L 

(3).  Our translent absorpt~o~l  data could llot 
d~stinguish betwce~l the two poss~bil~ties, and 
these fast folding i l p a ~ n i c s  were a relatively 
 nill lor component of the stuily ilescribeil in 
our report. Chan et nl.. n - ~ t h  the use of trvv- , 
tophan (Trp) fluorescence as a probe, found 
no significant collapse of the protein on the 
s~~bm~llisecond tllne scale following dissocia- 
t ~ o n  of CO fro111 unfolded cyt c". Clearly, 
~ l l u l t i ~ l e  spectroscopic probes m ~ ~ s t  be em- 
k1107.ed to study protein folding; accordingly, 
we are currently develop~ng t~me-resolved Try 
fluorescence as a 13rohe for ET-init~ated fold- 
ing of cyt cll. 

A narticularlv s~ellificant d~fferc~lce be- , ~, 
tween our work and that of Chan et nl. is the 
nature of the unf'olded form of the protein. 
The  initial state in ET-triggered cyt cll fold~ng 
IS guaniiline hydrochloride (GuHCl) dena- 
tured krricytochromc c (cyt clll) (1 ,  4) ;  in 
contrast, Chan et nl. start with CO-ligated cyt 
c" in the presence of GuHC1 (2).  Higher 
GLIHCL co~lcelltratio~ls are required to unf'old 

, . 
does CO bi~ldi~lo  to the krrohcme. Given 
these differences, it is reaso~lable to question 
whether the two unf'olded states arc the same. 
Invcstigatiolls of cyt cll' folding using stoppcd- 
flow kinetic spectroscopy have been interpret- 
ed in terms of a minor collapse during the 
mixi~lg dead time (-2 111s) (5). Nevertheless, 
the reduction in Trp fluorescence observed in 
this burst phase is measurably grcater than the 
changes fo~md by Chan et (11.; this rcd~iction 
has heen attributed to aglccrease in the TIT to 
heme distance of -5 A. Given the possible 
differences between the unfolded f'or~l~s of the 
proteins, n e  m ~ ~ s t  use Trp fluorescence as an 
addit~onal probe in our studies of ET-~nitiatcd 
cyt cll folding. 

T h e  complex process of protein folding 
is believed to involve dynamics that span 
Inore than 12 orders of magnitude in time 
(picoseconds to minutes). T h e  power of 
optical triggering methods ( s ~ ~ c h  as photo- 
induced CO dissociatioll and ET chemistrv) , , 

is that they lay open a large part of this time 
regime for direct examination. 
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Complementary DNA for 12-Kilodalton 
B Cell Growth Factor: Misassigned 

T h e  12-kL3 B cell gro~vth factor (BCGF),  
also k ~ l o w n  as l o ~ v  ~ m o l e c ~ ~ l a r  weight- 
BCGF or BCGF, is a cytokine proiluceil by 
activateid T lymphocytes (1-4). Several 
functions have been implicated for this 
factor. hlost importantly, 12-kD BCGF 
has been suggesteid to  be a colnlnoll pro- 
gression factor for human  R lymphocytes 
ancl to  have a n  autocrine role in B cell 
~leoplaslns ( 5 ) .  T~velve-kilodalton RCGF 
was purified to homogeneity in  1985 (S ) ,  
anid cloning of the  corresponding c D N A  

was reported 2 years later (4 ) .  However, 
these studies have not  heen confirmed. 
and the  exact molecular connection be- 
tween the  widely used colnnlercial BCGF 
(purified from the  suyernatants of mito- 
gen-activated lymphocytes), natural 12- 
kD BCGF, and the  r e ~ o r t e d  cL7NA has 
remaineid ambiguous. Recently, a genomic 
segnlellt that  clearly corresponils to  the  
reported c D N A  seiluence ~ v a s  identified 
( 6 ,  7 ) .  Sec luenc~~lg  of the  genomic D N A  
of 12-kD BCGF by Zii;tkien.icz et nl. ( 6 )  
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