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Interlayer Tunneling Models
of Cuprate Superconductivity:
Implications of a Recent Experiment

A. J. Leggett

It is shown that, given a few generic assumptions, any theory of high-temperature
superconductivity that attributes a substantial fraction of the condensation energy to the
saving of c-axis kinetic energy must predict an inequality relating the c-axis penetration
depth \ | (0)to the zero-temperature superconducting-normal energy difference and the
fluctuations of the c-axis kinetic energy around its mean value. Application of this formula
to Tl,Ba,CuQ, implies that if A  (0) is greater than 10 micrometers, as suggested by a
recent experiment, these fluctuations must have an unusual form.

Of the many and varied approaches to the
high-temperature superconductivity (HTS)
problem currently available, none is more
novel or intriguing than the interlayer tun-
neling (ILT) model of Anderson and co-
workers (1—4). This model rests on two
major postulates: (i) The normal state of
the electrons within a single CuO, plane is
different in nature from the traditional
Landau Fermi liquid, and (ii) as a result,
single-particle tunneling between the CuO,
planes is strongly inhibited in the normal
phase; however, in the superconducting
phase, tunneling of pairs is possible and
results in a strong decrease of the c-axis
kinetic energy T | . Thus, depending on the
particular version of the model considered,
either all or, at least in the cuprates with
higher transition temperatures T, a large
fraction of the condensation energy E_ .,
(the difference between the 'superconduct-
ing ground-state energy and the “best” nor-
mal-state energy) comes from the decrease
of (T, ) (brackets denote expectation value)
in the superconducting state. In this report,
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[ shall take this last statement as the defi-
nition of the ILT model, irrespective of the
way in which point (i) is implemented.

The ILT model has a number of attrac-
tive features. It explains in a natural way
why all materials known to date with T_ >
35 K have well-separated planes in which
the electronic behavior appears to be two-
dimensional (2D) in the first approxima-
tion, and why despite the apparent simi-
larity of the in-plane behavior, the values
of T, for the various cuprates vary by a
factor of more than 20. The model obvi-
ates the need for an anomalously strong
in-plane attraction mechanism, and it can
be argued (2) to be consistent with a
variety of apparently puzzling experimen-
tal properties of the cuprates, in particular
(4) with the normal- and superconduct-
ing-state finite-frequency c-axis conduc-
tivity. It is therefore important to explore
the generic consequences of the ILT mod-
el and to examine their compatibility with
existing experimental data.

For this purpose, I confine myself to
those (“single-plane”) cuprates in which
all pairs of neighboring CuO, planes are
equivalent. In this case, various particular
SCIENCE »
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implementations of the ILT model [see
especially (3)] lead to an expression for
the T = 0 interplane coupling energy E, .
(which in these versions is the difference
between the normal- and superconduct-
ing-state values of (T |)) that is a special
case of the more general Lawrence-
Doniach (LD) expression (given for a par-
ticular pair of planes i, i + 1)

Ei = K — JeosAdP™" (1)

where Ap{P4i" is the difference in the phase
of the superconducting order parameter be-
tween the two planes in question, and K
and ] are material-dependent constants. In
non-ILT theories, which simply regard the
interplane tunneling process as described by
the original Josephson model (5) for a tun-
nel oxide barrier and naively apply the Am-
begaokar-Baratoff expressions (6), one finds
that K = J, and hence in the superconduct-
ing ground state [AbF*0 = 0], no appre-
ciable energy is saved by tunneling. How-
ever, in the current form of the ILT model
(3, 4), K is postulated to be zero, or at any
rate, K << J. If this is so, one obtains a
relation between the saving of c-axis kinetic
energy in the superconducting ground state,
AT, and the T = 0 c-axis superfluid den-
sity p,: for K =0

ns ﬁ 2
AT =15,5) P

where m is the electron mass and d is the
interplanar spacing. In the ILT model, AT"}?
supplies a substantial fraction m of the su-
perconducting condensation energy, which,
as pointed out by Anderson (4), leads to a
definite prediction for the T = 0 c-axis
penetration depth A | (0). For our purposes,
it is convenient to write this prediction in
the form

(2)

1 i mc aA\?
)\in‘ﬂ Nt At = E—‘m (3)

where ¢ is the speed of light, E_ . is the
superconducting condensation energy per
formula unit, a is the Bohr radius, and A is
the area per formula unit. (The precise def-
inition of Aj 1 is chosen with a view to
giving Eq. 7 below a simple form.) A case
of particular interest is T1,Ba,CuQg4 (TI-
2201), where A+ ~1.8 pm. Recently, van
der Marel et al. (7) concluded, on the basis
of the absence of a c-axis plasmon peak in
their optical reflectivity measuréments, that
A, (0) must be >10 wm. From Eq. 3, this
implies that < 0.01 in this material; this
conclusion holds for any positive value of K
in Eq. 1.

A value of A [ (0) > 10 pm in T1-2201, if
confirmed, would thus seem to refute defin-
itively any version of the ILT model, such
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as that of (3, 4), in which AT"" is given by
(the negative of) Eq. 1 with K = 0. How-
ever, it may be argued that there is no
particular reason why a generic version of
the model should lead to Eq. 1, or even if it
does, why K cannot be negative. Thus, it is
of interest to inquire whether there are any
general constraints that a large value of
A ,(0) would put on the ILT model.

The purpose of this report is to point out
observations. (i) Although in a periodic
system there is no generic formula (8) for
the ratio of the expectation value of T in
the superfluid ground state, (T )y, to the
quantity p, , it is possible to find an upper
bound on this ratio in terms of a dimension-
less parameter. The parameter is a measure
of the probability of anomalously small val-
ues of T . (ii) Large values of A (0) thus
imply large values of this parameter.

To be specific, I consider a perfect sin-
gle-plane cuprate, described by a Hamilton-
ian H and a (superconducting) ground state
W, such that the following rather weak set
of conditions is satisfied.

1) His of the form Hy + T, where H,
contains in-plane kinetic energies and (in-
tra- and interplane) electron-electron in-
teractions, ion kinetic energies and elec-
tron-ion interactions, and is invariant un-
der time reversal, and T is a simple one-
parameter tight-binding Hamiltonian for
the interplane motion, with a parameter
t, that may depend on the ionic coordi-
nates (and possibly also on the coordinates
of the electrons other than the hopping
one).

2) The ground state W, does not spon-
taneously break the crystalline or time-re-
versal invariance of H.

3) The real part of the c-axis conductiv-
ity o(w, T) tends to zero as T — 0 and the
frequency w — 0.

4) 1 also impose for the moment a more
problematic condition: The quantity T,(§)
defined below in Eq. 4 is positive definite
except for a set of & of measure zero (9).

Let the integer z, = 1, 2, ..., n denote
the plane (layer) index of the kth electron
(k=1,2,...,N), and let £ stand for all
coordinates of the system other than g,.
Recall that W, is real because time-reversal
invariance is not broken, and define

Ti(&) = 2t (&)W,
(1 =9 Volzy =i + L, (4)

The crucial point in the ensuing argument
is that, despite condition (2), for given &,
the quantity T,(§) may depend on i, and
therefore, the “best” wave function may for
given & have a different phase drop across
different pairs i, i + 1.

Then [ assert that, subject only to the
above conditions, the following inequality

holds
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5

h
_<TJ_>0 =a ﬁ Ps1

where
. (T
o = lim

i=1

(0)

Equation 5 is actually a special case of a
more general inequality for the superfluid
density of a many-body system; here I
sketch the bare bones of the derivation. (i)
From postulate (3), the system can only
respond adiabatically to the “phase twist”
A in the (single-particle) boundary condi-
tion that defines the superfluid density, and
from postulates (1) and (2), the deforma-
tion in the limit Adp — O must consist of
simply multiplication by a phase factor
expli®(z;, £)], which must satisfy, among
other things, the boundary condition ®(z,
=n,&) — Pz, =1, & = Ad for all & (ii)
The increase in (T ) is a lower bound (in
the limit A¢ — 0) on the increase in (H);
the former, being given in this limit by
S T(E)[AG(E)]), where Ad (£) = Pz, = i
+1,&) — ®(z, =1, &), is minimized, subject
to the above boundary condition, by the
choice Ad,(€) o« [T,(€)] !, and the resulting
value is  simply  proportional  to
SIT(E)] 1L Integration over € and use
of the standard definition of p_; then yields
the inequality in Eq. 5 (10). It should be
strongly emphasized that Eq. 5 is an upper
bound only and, in particular, it is perfectly
possible for a to be infinite without p,,
being zero.

Now it is clear that the value of (T | ) in
the normal ground state cannot be positive
(were it so, we could simply perform a gauge
transformation to make it negative without
affecting (H)), and thus, the right-hand
side of the Eq. 5 also constitutes an upper
bound on AT, . Consequently, any theory
of the ILT type that attributes a fraction m
of the superconducting condensation ener-
gy to AT, must predict the inequality

NL(0)

7
)\ILT

(7)

a ="

where N | (0) is measured experimentally.
Equation 6 shows that « is a measure of
the fluctuations of T,(&) around its mean
value, or more precisely, of the likelihood of
occurrence of very small values of (special
elements of) this quantity. In the present
context, the interesting question is how
plausible is a large value (say =30) of !
Defining ¢, as the ratio of T, (per formula
unit) to the value of the hopping matrix
element ¢, calculated by band-theory tech-
niques, we can write a < £t~ !, where I use
the inequality, valid for any positive defi-
SCIENCE »
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nite function x, (x~!) = (). It follows
that if the distribution f(t) behaves in the
limit ¢ — 0 as ¢~ A+ (with a lower cutoff if
v > 0), then a value of « greater than 30
implies that y must lie either above —1 or
very close to it (the precise range being
determined by the details of the larger —t
behavior). So far, I believe that the results
are rigorous.

Physical intuition tells us, however, that
Eq. 5, with Eq. 6, is in reality too weak a
lower bound on the superfluid density.
Consider, for example, the effect of one
particular variable entering the set (&},
namely, the in-plane coordinate of the ith
(tunneling) electron. The reason that « in
Eq. 6 can be large, even infinite, is simply
that in a strictly 1D system, the probability
of finding an arbitrarily weak link tends to
unity as N — 0. In reality, the supercurrent
“shunts” any such weak links by flowing
sideways in the plane until it finds a stron-
ger one. Thus, to have an “effective” link of
strength less than t, it is necessary (although
far from sufficient) for this value to apply
over an area of the order of L%, where L is
such that (A%/2mL2){(p*/p) ~ tt, and p" is
the superfluid density in the ab plane. Let us
define the parameter k = (ﬁz/Zmléti)(pfj”/
p), where I, is the correlation length of ¢
within the plane. Because the correlations
are likely to be themselves primarily deter-
mined by in-plane rather than interplane
effects, it seems likely that k is large com-
pared to 1; in fact, for most realistic models
it should be of order of the anisotropy ¢, /t,,
of the tight-binding matrix elements (prob-
ably ~50 for T1-2201). The number of in-
dependent links that must be in parallel is
at least of order kt™!, and a fairly straight-
forward combinatorial argument shows that
the “effective” value of a so produced, for
negative v, is such that axklyl(ln o) < I;
thus, for a = 30, the quantity v, if negative,
must be exceedingly small. For positive v,
the constraint is weaker: If the lower cutoff
is €, then the relevant inequality is
ka(e.a)Y < 1. However, because in the ILT
model the quantity 7 is constrained to be at
least E_ 4/t ,, a ratio that I estimate (I1) at
about 5 X 1077, it follows that unless y has
a large value (=1.7 + 0.5ln k) , t cannot be
determined by the asymptotic form of the
fluctuations but must have substantial con-
tributions from larger values of t. The most
“naive” model for producing large probabil-
ities of small values of t—albeit one that is
arguably not in the spirit of the ILT con-
cept, namely a model in which (i) the
relative energy AE of neighboring planes
fluctuates with a root-mean-square ampli-
tude large compared to t, and (ii) t ~
2 (AE? + 2)712 (so that y = 1)—does
not satisfy the constraints derived here
[which are necessary but by no means suf-



ficient for the viability of the ILT model in
the face of a large value of N | (0)].

With the above analysis in mind, let us
consider the consequences of relaxing con-
dition (4). The argument leading to Eq. 5
now fails because it may be possible to put
in a much larger than average value of Ag,
across links for which T,(§) is negative,
thereby actually decreasing (T |) by itself.
However, consider a set of N links with an
average value of T, (&) equal to —&(T);
then an (not entirely trivial) argument
analogous to that of the proceeding para-
graph shows that for such a configuration to
give an energy advantage, we must have N
= k/et (or k/e’t for £ = 1). Bearing in mind
that by definition €t =< 1 and that we have
estimated k ~ 50, we now ask if it is
possible to find a distribution f(t) of the
T,(§)—even a pathological one—such that
the probability of such an occurrence is, as
a minimum, comparable to the inverse of

the number of planes (~1077, say). I have

so far failed to find such a distribution and,
although 1 have at present no rigorous
proof, strongly suspect that none exists.
Thus, although relaxation of condition (4)
at first appears to prevent the derivation of
a rigorous inequality such as Eq. 5, it should
not affect the qualitative conclusions
reached above.

The contlusion is that although a value
of A, (0) for T1-2201 greater than 10 pm
would not definitively refute a generic
form of the ILT model, it would as a
minimum either violate one or more of
assumptions (1) through (3) or constrain
the ground state to have extremely large
fluctuations in T, (which should, at least
in principle, be detectable in angle-re-
solved photoelectron spectroscopy mea-
surements on a- or b-axis—oriented films).
It remains to be seen whether a concrete
version of the model having this feature
can be constructed and shown to be phys-
ically reasonable.
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Evidence for Charge-Flux Duality near the
Quantum Hall Liquid-to-Insulator Transition

D. Shahar, D. C. Tsui, M. Shayegan, E. Shimshoni,*
S. L. Sondhif

A remarkable symmetry has been observed between the diagonal, nonlinear, current-
voltage (/-V,,) characteristics taken in the fractional quantum Hall effect (FQHE) liquid
state of the two-dimensional electron system and those taken in the bordering insulating
phase. When properly selected, the I-V,, traces in the FQHE regime are identical, within
experimental errors, to V, -/ traces in the insulator, that is, with the roles of the currents
and voltages exchanged. These results can be interpreted as evidence for the existence
of charge-flux duality symmetry in the system.

The theoretical understanding of the
quantum Hall effect (QHE) is believed to
involve the physics of the ideal states and
that of localization. A precise theoretical
account of the QHE phenomena is, not
surprisingly, controversial, for it requires
solving a problem with interactions, frac-
tional statistics, and disorder—a rather for-
midable task. Nevertheless, considerable
theoretical progress had been made in re-
cent years in understanding the phase dia-
gram of QH states and the transitions be-
tween them.

In a recent theoretical paper, Kivelson,
Lee, and Zhang (1) used a flux attachment
(Chern-Simons) transformation (2) to map
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the two-dimensional electron system
(2DES) at high magnetic field (B) onto a
bosonic system under a different field B
The advantage of this mapping is clear if
one considers the “magic” Landau-level fill-
ing fractions (v values) where the fractional
quantum Hall effect (FQHE) liquid states
are observed. At these v values the Chern-
Simons gauge field cancels, on average, the
externally applied B, and the composite
bosons (CBs) experience a vanishing B
The incompressible FQHE states then arise
as a result of the formation of a Bose-
condensed, superconducting state of the
CBs.

At v values other than the magic v
values, the cancellation of the external B is
not exact and, according to the bosonic
picture, vortices are created in the CB con-
densate. For small deviations from magic v
values, the vortex density is small, and the
vortices are localized by disorder and do not
contribute to the long-wavelength electri-
cal response. When the deviation from the
magic v values becomes sufficiently large,
the superconductivity of the CBs is de-
stroyed by the excess magnetic field and the
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