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lnterlayer Tunneling Models 
of Cuprate Superconductivity: 

Implications of a Recent Experiment 
A. J. Leggett 

It is shown that, given a few generic assumptions, any theory of high-temperature 
superconductivity that attributes a substantial fraction of the condensation energy to the 
saving of c-axis kinetic energy must predict an inequality relating the c-axis penetration 
depth X,(O),to the zero-temperature superconducting-normal energy difference and the 
fluctuations of the c-axis kinetic energy around its mean value. Application of this formula 
to TI,Ba,CuO, implies that if X,(O) is greater than 1 0  micrometers, as suggested by a 
recent experiment, these fluctuations must have an unusual form. 

Of the many and varied approaches to  the 
high-temperature superconductivity ( H T S )  
proble~n currently available, none is more 
nox~el or intriguing than the interlayer tun- 
neling (ILT) model of Anderson and co- 
workers (1-4). This model rests o n  two 
major postulates: ( i )  T h e  normal state of 
the electrons within a single CuO-, plane is 
different in  nature from the traditional 
Landau Ferrni liquid, and (ii)  as a result, 
single-particle tunneling between the  CuO,  
planes is strongly inhibited in the normal 
phase; h o ~ ~ e \ , e r ,  in the supercond~~ct ing 
phase, tunneling of pairs is possible and 
results in a strong decrease of the  c-axis 
kinetic energy T,. Thus, depending o n  the  
particular version of the  model considered, 
either all or, at least in the  cuprates with 
higher transition temperatures TL, a large 
fraction of the condensation energy 
( the  difference b e t ~ ~ e e n  the  .superconduct- 
ing ground-state energy and the "best" nor- 
mal-state energy) comes from the decrease 
of (T,) (brackets denote expectation value) 
in the superconducting state. In  this report, 

Department of Physlcs. Unversty of l l no~s  at Urbana 
Champaign. Urbana, L 61 801, USA. 

I shall take this last statement as the defi- 
nition of the  ILT model, irrespectit~e of the 
way in which point ( i )  is implemented. 

T h e  ILT model has a number of attrac- 
tive f e a t ~ ~ r e s .  It explains in a natural way 
why all materials known to  date with Tc > 
35 K ha\,e well-separated planes in which 
the  electronic behavior amears  to be two- . A 
Ji~nensiollal  (2D)  in  the  first approxima- 
t ion, and ~ 7 h y  despite the  apparent simi- 
larity of the  in-plane behavior, t he  val~les 
of Tc for the  various cuprates vary by a 
factor of more than  20. T h e  model ohvi- 
ates the  need for a n  anomalo~~s ly  strollg 
in-plane attraction mechanism, i n i  1 ~t can  
he argued ( 2 )  to  be consistent with a 
variety of apparently puzzling experimen- 
tal properties of the  cuprates, in particular 
( 4 )  ~ ~ i t h  the  normal- and superconduct- 
ing-state finite-frequency c-axis conduc- 
tivity. It is therefore important to  explore 
the  generic consequences of the  ILT mod- 
el and to examine their compatibility with 
existing experimental data.  

For this purpose, I confine myself to 
those ("single-plane") cuprates i11 which 
all pairs of neighboring CuO,   lanes are 
eq~1ivalent. I n  this case, vario~ls particular 

implementations of the  ILT model [see 
especially ( 3 ) ]  lead to a n  expression for 
the  T = 0 interplane coupling energy E,,,, 
(which in  these versions is the  difference 
between the  normal- and superconduct- 
ing-state \,slues of (T,)) that  is a special 
case of the  more eeneral Lawrence- - 
Doniach (LD) expression (given for a par- 
ticular pair of planes i ,  i + 1 )  

\\,here Acb(',"') is the difference in the ~7hase 
8 z 

of the superconducting order parameter be- 
tween the  two planes in question, and K 
and J are material-dependent constants. In  
non-ILT theories, which simply regard the  
interplane tunneling process as described by 
the  original Josephson   nod el (5) for a tun- 
nel oxide barrier and na~vely apply the Am- 
begaokar-Baratoff expressions (6) ,  one finds 
that K = J, and hence in  the  s~~perconduct-  
ing ground state [A+,('"') = 01, no appre- 
ciable energy is sax~ed by t ~ ~ n n e l i n g .  H o v -  
et7er, in the  current form of the  ILT model 
( 3 .  4 ) ,  K is p s t ~ l l a t e d  to be zero, or at any 
rate, K << J. If this is so, one obtains a 
relation het\veen the saving of c-axis kinetic 
energy in the superconducting ground state, 
ATY, and the  T = 0 c-axis superfluid den- 
sity p,,: for K = 0 

where m is the  electron mass and d is the  
interplanar spacing. In  the  ILT model, AT'? 
supplies a substantial fraction of the su- 
perconducting condensation energy, \vhich, 
as pointed out by Anderson (4 ) ,  leads to a 
definite prediction for the  T = 0 c-axis 
penetration depth A (0) .  For our purposes, - 
it is convenient to write this prediction in 
the form 

where c is the speed of light, E c,,,,, is the  
superco~lducting condensation energy per 
formula unit, ac is the Bohr radius, and A is 
the area per formula unit. (The  precise def- 
init ion of hlLT is chosen with a view7 to  
givirig Eq. 7 be lo^^ a simple form.) A case 
of particular interest is T 1 2 B a 2 C ~ ~ 0 ,  (Tl-  
2201), where A,,, -1.8 pm. Recently, van 
der Marel e t  al. (7) concluded, o n  the basis 
of the absence of a c-axis p las~non peak in 
their optical reflecti\,ity measurements, that 
A,(@) must be >10 pm. From Eq. 3, this 
implies that < 0.01 in this material; this 
conclusion holds for any positive value of K 
in ELI. 1. 

A value of A,(@) > 10 pm in T1-2201, if 
confirmed, would thus seem to refute defin- 
itit~ely any \,ersion of the ILT model, s ~ l c h  
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as that of (3, 4) ,  in \vIlich AT':- - is gi\,en liy 
( the  negative of) Ecl. 1 with K 2 0.  How- 
ever, it may be argued that there is no  
particular reason why a generic version of 
the nlodel should lead to Ecl. 1,  or even if it 
does, why K cannot he negatil-e. T ~ L I S ,  it is 
of interest to inquire Lvhether there are any 
general constraints that a large value c ~ f  
l,(O) n~ould put o n  the  ILT model. 

T h e  purpose of this report 1s to point out 
olxerx~ations. ( I )  Although in a periodic 
systerri there is no generic formula (8)  for 
the  ratio of the e x ~ e c t a t i o n  val~le  of T in 

1 

the superfluid ground state, (T,),, to the 
quantity p,,, ~t is possible ti) find an upper 
bound o n  this ratio in terms of a dimension- 
less parameter. T h e  paralneter is a measure 
of the of anomalously snlall \,al- 
ues of T,. ( i i)  Large \ d u e s  of l ,(@) thus 
imply large values of this parameter. 

T o  he specific, I consider a perfect sin- 
gle-plane cuprate, described hy a Hamilton- 
ian H and a (superconducting) ground state 
'P, such that the  hllowing rather weak set 
of cond!tions is satisfiej, 

1 )  H is of the  for111 Ha + T,, n ~ h e r e  A, 
contains in-plane kinetic energies and ( in-  
tra- and interplane) electron-electron in- 
teractions, ion kinetic energies and elec- 
tron-ion interactions, and is invariant LIII- 

der time reversal, and T, is a simple one-  
parameter tight-binding Hanl i l to~l ian for 
the  interplane motion, nlith a parameter 
t - that  nlay depend o n  the  ionic coordi- 
nates (and possihly also o n  the  coordinates 
of the  electrons other than  the  hopping 
one) .  

2) T h e  ground state T, does not spo11- 
taneously break the crystalline or time-re- 
t~ersal inx~ar~ance of H. 

3) T h e  real part of the  c-axis conductiv- 
ity o(w,  T )  tends to zero as T + 0 and the 
frequency o + 0.  

4 )  I also impose for the  ~ilorrient a Inore 
problematic con~iit ion: T h e  q ~ ~ a n t i t y  T,([) 
defined below in ELI. 4 is positive definite 
except for a set of E of Lneasure zero (9 ) .  

Let the integer ,z,% = 1, 2,  . . . , n denote 
the plane (layer) index of the  iith electron 
( k  = 1, 2, . . . , N), anii let [ stand for all 
coordinates of the system other than ;,. 
Recall that Vr> 1s real hecause time-rex~ersal 
invar~ance is not broken, and define 

T h e  crucial point in the ensuing argument 
is that,  despite condition (2 ) ,  for given (, 
the quantity T ( [ )  may depend o n  i, and 
therefore, the "hest" wa1.e filnction nlay for 
given [ have a Jifferent phase drop across 
clifferent pairs i ,  i + 1. 

T h e n  I assert that,  suhject only to the 
ahove conditions, the  follon~ing inequality 
holds 

where 

Equation 5 is actually a special case of a 
niore general ~ n e q u a l ~ t y  for the  superfluid 
density of a many-body system; here I 
sketch the  bare hones of the de r~r~a t ion .  i i )  
Fro111 postulate (3), the systerri can only 
respond adiabatically to the "phase twist" 
A+ in  the  (single-particle) houndary condi- 
tion that defines the  superfluid i iens~ty, and 
from postulates (1)  and (2 ) ,  the  deforma- 
tion in the lirri~t A+ + 0 m ~ ~ s t  c ~ n s i s t  i ~ f  
sinlply m~~lt ip l icat ion by a phase factor 
esp[i@(;,, 01, uh ich  must satisfy, among 
other things, the boundary condition @(:, 
= 11, 5.) - @(;, = 1, 5.) = A+ for all 5.. (ii) 
T h e  incl.ease in (T,) is a loayer bound ( in  
the  limit A+ + 0 )  o n  the  increase in (H); 
thc  former, being given in this li~riit by 
X,T,(E)[A+,([)I2, where A+,([) = @(;, = i 
+ 1, [) - @(:, = i, [), is minimized, s~thject 
to the  ahove houndary condition, hy the 
choice A+,([) x [T,([)Ip1, and the resulting 
value is simply proportional to 
{X,[T([)Ip I)- ' .  Integration over [ and use 
of the standard definition of p,, then yields 
the ineuualitv in Ea. 5 ( 1  C). It should he 

L ,  

strongly e~llphasized that Ecl. 5 is a n  upper 
I ~ O L I I I C ~  only and, in particular, it is perfectly 
possible for o to be infinite \vithout p,, 
being zero. 
No\\, it is clear that the  v,ilue of ( T  ) in , , - 

the normal gro~und state cannot he positive 
(\\.ere it so, u.e could simply perform a gauge 
transformation to make it negative \vithout 
affecting (Ii,,)), and thus, the right-hand 
side of the Eo. 5 also cons t i t~~ tes  a n  uLlver 

L .  

hound o n  AT,,,. Conseq~~en t ly ,  any theory 
of the ILT type that attributes a traction I- 
of the supcrconcluct~ng conilensatic~n ener- 
gv to  AT,,, muit p red~c t  the ~ n e q ~ l a l ~ t y  

!&-here A,(@) is measureii exper~mentaIl7-. 
Equation 6 shotvs that cu is a measure of 

the f l~~ctuat ions  of Tr ( ( )  aro~lnd its nlean 
value, or lnore precisely, of the likelihood of 
occ~urrence of t7ery small values of (special 
e le~nents  of) this iluantity. In  the  present 
context, the interesting question is ho\y 
plausible is a large \,slue (say 2 3 0 )  of a?  
Defining t ,  as the ratio of T, (per form~lla 
unit) to the value of the  hopping matrix 
elenlent t, calculated hy ha~d- theory  tech- 
niques, we can ~vr i te  a 5 t a t - ' ,  nlhere I use 
the inecluality, valiii for any positive defi- 

lute f~lnct ion X ,  (x-') 2 ( x ) ~ ' .  It fo1lon.s 
that it the distribution f ( t )  l?eha\,es in the  
l i~ili t  t 0 as t ( ' '  7) (with a lower cutoff if 
y > O), then a value of cu greater than 30 
implies that y 11n1st lie either above 1 or 
1-ery close to it ( the  precise range heing 
determined by the details of the larger - t  
beha\,ior). So far, I believe that the results 
are rigorous. 

Physical intuition tells us, ho\vever, that 
Eq. 5, with Eel. 6, is in  redity too weak a 
l ~ w e r  bound o n  the superflu~d iiensity. 
Consider, for example, the effect of one 
particular variable entering the set {[I, 
namely, the  in-plane coi~rdinate of the  ith 
( t ~ ~ n n e l i n c )  electron. T h e  reason that a in  , ,, 
ELI. 6 can be large, even ~ n f ~ n ~ t e ,  1s si~iiply 
that in a strictly 1 D  system, the 
of finding a n  arbitrarily \\reak link tends to 
unity as I\T 4 r. I n  reality, the  aLlpercurrent 
"shunts" any such Lveak links hy tlon,inc 
sidebvays in the until it finds a stron- 
ger one. Thus, to have a n  "effecti\.eX link of 
strength lesc than t, it is neceqsary (altho~rglh 
far from sufficient) for this value to apply 
ol.er an x e a  of the  order of L', ,\.here L is 
s ~ l c h  that (fi'/2mL')(p;"/p) - tt, and p;" ~b 

the superfluiii Liensity in the  ah plane. Let us 
define the paranleter K = (fi2/2~i~l~t,)(p:ii ' /  
p),  here 1, is the correlation length of t 
within the  plane. Because the  correlations 
are likely to  be themse11-es ~rirnarilv deter- 
mined 1.y in-plane rather than interplane 
effects, it seenls liltelv that K is large corn- 
pared to 1; in fact, for most realistic models 
it sho~ulii 1.e of order ot the anis~)tropy t - 
of the tight-biniiing matrix e le~nents  (prcd- 
ahly -50 for Tl-2201). T h e  number of in- 
cie~7endent links that must he in ~ a r a l l e l  is 
at least of orcler ~ t - I ,  ;lnd a fairly straight- 
for\vard comhinatorial arg~unent sho\vs that 
the "efkcti\,en value of cu so orod~ucecl. for 
negat~ve y ,  is such that o~Iyl(111 a )  5 1; 
thus, for a 2 30, the quantity y, if negative, 
must be esceedingly small. For positive y ,  
the constraint is ueaker: If the lo\ver cutoff 
IS E ~ ,  then the relel-ant ineil~~ality is 
K ~ ( E , ~ ) Y  5 1. However, hecause in the  ILT 
nioiiel the quantity t is ci)nstraineil to lie at 
least E It,, a ratio that I esti~ilate ( 1  1 ) at 
ahout 5 x I@-' ,  it follo~vs that  unless y ha% 
a large value 121 .7  + 0.5111 K )  . 7 cannot l7e 
determined hy the asy~nptotic for111 of the 
fluctuations hut must Ila\,c substantial co11- 
trihutions from larger values of t. T h e  lllost 
"na'ive" model for producing large prohahil- 
ities of bniall v,llues of t-alheit one that is 
arguably not in the spirit of the ILT co11- 
cept, namely a nlodel in \vhich ( i )  the 
relative energy AE of neighbc>ring 
fluct~lates with a root-mean-s~j~lare ampli- 
tude large conlpareil to t, and (ii)  t - 
t:(AE2 + t i ) - ' ; '  (so that y = 1)-Jots 
not satisf\- the constraints deri\,eii here 
[.~vhich are necessary hut hy n o  means s~if- 
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ficient for the  \,iahility of the ILT liiodel in 
the face of a large value of A ( @ ) I .  

Wi th  the above analysis in  mind, let us 
consider the consequences of relaxing con- 
dition (4) .  T h e  argunient leading to Eq. 5 
now7 fails hecause it may he possihle to L ~ L I ~  , L 

in a much larger than average \,slue of A+, 
across links for which Tr(() is negative, 
thereby actually decreasillg (77,) hy itself. 
Hon~e \~er ,  consider a set of .Y links with an  
average value of T,(() equal to -E(T); 
then an (no t  entirely trivial) arg~unent  
analogous to that of the  proceeili~lg para- 
graph sho~vs that for such a configuration to 
give an  energy advantage, we must have .,@' 

2 K / E ~  (or K/E'T for E 5 1) .  Bearing in lllinil 
that by definition ET 5 1 anil that we have 
estimated K - 50, we no\v ask if it is 
possible to find a distribution f ( t )  of the  , ,  , 

TI(()-even a pathological one-such that 
the probability of s ~ ~ c l l  an  occurrence is, as 
a minimum, comparable to tlle inverse of 
the numher of planes (-lop' ,  say). I have 
so far failed to finil such a distribution and, 
although I have a t  present no  rigorous 
proof, strongly suspect that none exists. 
Thus, although relaxation of condition (4 )  
a t  first appears to prevent the derivation of 
a rigorous inecluality s ~ l c h  as Ecl. 5, it sho~lld 
not affect the uualitative concl~~sions  
reached above. 

T h e  con t l i~s ion  is that  although a value 
of A,(O) for T1-2201 greater than  10 Frn 
woulii not  clefinitively refute a generic 
for111 of the  ILT model. it \vould as a 
rn in i~n~l ln  either violate one  or Inore of 
assumptions (1 )  through ( 3 )  or constrain 
the  g ro~ lnd  state to have extre~nely  large 
fluctuations in T, ( ~ v h i c h  should, a t  least 
in principle, be detectable in angle-re- 
solveil photoelectron spectroscopy mea- 
surements o n  n- or b-axis-oriented films). 
It renlains to  he seen whether a concrete 
version of the  lilodel having this feature 
can he constructecl and shown to  he pllys- 
icallv reasonable. 
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Evidence for Charge-Flux Duality near the 
Quantum Hall Liquid-to-Insulator Transition 

D. Shahar, D. C. Tsui, M. Shayegan, E. Shimshoni," 
S. L. Sondhi-i- 

A remarkable symmetry has been observed between the diagonal, nonlinear, current- 
voltage (I-Vxx) characteristics taken in the fractional quantum Hall effect (FQHE) liquid 
state of the two-dimensional electron system and those taken in the bordering insulating 
phase. When properly selected, the I-Vxx traces in the FQHE regime are identical, within 
experimental errors, to Vxx-1 traces in the insulator, that is, with the roles of the currents 
and voltages exchanged. These results can be interpreted as evidence for the existence 
of charge-flux duality symmetry in the system. 

T h e  theoretical understancling of the 
iluantum Hall effect (QHE)  is helievecl to 
involve the of the iileal states and 
that of localization. A precise theoretical 
account of the  Q H E  pheno~nena  is, not  
surprisingly, controversial, for it requires 
solving a problem \vith interactions, frac- 
tional statistics, and disoriler-a rather for- 
midable task. Nevertheless, consiilerable 
theoretical progress had been lilade in re- 
cent years in unilerstanding the phase ilia- 
gram of Q H  states and the  transitions be- 
tween them. 

In a recent theoretical paper, Kivelson, 
Lee, and Zhang ( 1 )  ~lsed a f h ~ x  attachment 
(Chern-Simons) transformation ( 2 )  to map 

D. Shahar, D C Tsu~, M. Shayegan Depart~nent of Eec- 
tr~cal Eng~neer~ng, Pr~nceton Un~vers~ty, Pr~nceton, NJ 
08544. USA 
E. Shmsl ion~, Department of Physcs and the Beckman 
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the two-dimensional electron system 
(2L)ES) a t  high nlagnetic field (B)  onto  a 
hosonic systeni ~ lnder  a ilifferent fielil Bctf. 
T h e  advantage of this ~uapping is clear if 
one considers the "magic" Landau-level fill- 
ing fractions ( v  vahles) where the fractional 
quantuln Hall effect (FQHE) liiluid states 
are observed. A t  these v values the Chern- 
Simons gauge field cancels, o n  average, the  
externally applied B, and the  composite 
bosons (CBs) experience a vanishi~lg Bcft. 
T h e  incolli~ressihle FQHE states then arise - 
as a result of the fornlation of a Bose- 
condensed, s ~ ~ ~ e r c o n i h ~ c t i n g  state of the  
CBs. 

A t  v v a l ~ ~ e s  other than the  niagic v 
values, the cancellation of the  external B is 
not exact and, according to the  bosonic 
picture, vortices are createil in the C B  con- 
densate. For small Jevlations from nlaeic v - 
values, the  vortex density 1s small, and the  
vortices are localized hy disorder anil do not , ~- 
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