
Optical Control of Photogenerated Ion Pair 
Lifetimes: An Approach to a Molecular Switch 

e fkc t  to be observed, the  D A,-A,-D2 
1. - 

m o l e c ~ ~ l e  must fulfill several lnalor reuuire- 
me~ l t s .  First, ~t must he possihle to select~ve- 
1y excite the tu-o donors, LJI and D,. Zinc 
5-phenyl-10,l  5 , 2 0 - t r i ( n - L ~ e i ~ t y l ) p o r C  
(L3,) and the pl1ei1yldiinethyl~>yrrc>i-i1etI1ei1e 
dye (D,) were chosen tor this purpose he- 
cause they can he inciepenciently excited at  
416 anci 512 nm,  respectively. Second, the 
tlvo acceptors, A ,  and A , ,  shoulci he trans- 
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A prototype molecular switch is demonstrated that works on the principle that the local 
electric field produced by one photogenerated ion pair ( D , + - A , )  can influence the rate 
constants for photoinduced electron transfer and recombination in a second donor- 
acceptor pair (A,-D,). Two ultrafast laser pulses were used to control the rate of a 
photoinduced electron transfer reaction within a molecule that consists of two covalently 
linked electron donor-acceptor pairs fixed in a linear structure. Dl-A,-A,-D,. This type 
of molecular architecture may lead to the development of electronic devices that function 
on the molecular length scale. 

parent at  the two excitatio~n wavelengths ii-i 
either their neutral or sinelv rcduceci states. 

L ,  

However, they should have strong al-rsorp- 
tions at  other na\,elengths that are inde- 
pendently ohser1,ahle when Al  and A, are 
reciuced. 1,4:  5,8-NapI-itl-iale11ei1iimide ( A l )  
anci pyroinellitiinide ( A ? )  Lvere chosen be- 
cause they al-rsorb ~veakly at  416 a l ~ ~ {  512 Donor-accepti7r arrays that u~-idcrgo pho- 

toinduced electron transfer reactions are 
prom~sing as ino lec~~ la r  electronic devices 

possible to use the large, anisotropic, local 
electric iields generated by the iorination of 
ion pairs to control a second photoinduced 

nin in their ground states, and their raciical 
anion spectra ha\,e ~vell-separated absorp- 
tions at  480 and 711 nm,  respectively (20,  
2 1 ) .  T h i r d ,  t h e  popu la t ion  of fielci- 
generating ion pairs, D l f - A 1 - ,  within D l -  
A1-AL-D? 1111st he large enough to affect 
the electron transfer reactions of A,-D,. 
This tvas achieved hy clloosii~g a porphyrin 
lvith a large ahsorptioil cross section at  the 
416-nm excitation ~vavelcngth ( E ~ , ,  = 10' 
L C 1  cm- ' )  as D l  (22 ,  23) .  Fourth, reelox 
potentials for the one-electron oxidat1011 o i  
L3, and D, as well as tor the one-electron 

hecause Inany o i  these reactioi-is are revers- 
ihle, occur \vith l11gl1 c ~ u a ~ l t u m  efficiency, 
ancl r'l.occed lvith suhnicosecond time con- 

electron transfer reactloll on  a picosecond 
time scale. The  use of photogenerateci ion 
pairs to generate a n  electric field at  the 

stants (1-5). O n e  method of controll i~lg 
the rates of electron transfer reactions is 
through the  application of electric fields. 

molecular level holiis several advantages 
over external, lnacroscopic field generation: 
( i )  the applied field strength can he larger, 
that is, macroscopic field stre~lgths are lim- 
ited h ~ .  dielectric hreakdolvn; iii) the iield 

,As a conse~luence, a considerahle amount of 
work has hee11 devoted to the  theoretical 
modeling (7-9) and cxperi~nental  realiza- 
tion (1 0-1 2 )  o i  nlolecular electronic 
s~vitches consisting of organic electron do- 

, , 

can he t~~r ined on  and oii  on  a picosecond 
time scale; ( i i ~ )  the electric flelci is under 
optlcal control; and (iv) o111y a very small 
vohlinc is aifecteci l-ry the locally applieci 
electric field. Here, Lve ciescrihe a donor , -  

reciuction o i  A ,  and A, must he chosen to 
ensure that charge se~iaration and recomhi- 

nor-acceptor pall-s \\,hose i~~i- ic t ion is co1-i- 
trolled hv a11 external electric f~elcl. Lane- 
1n~11r-Rlodgett i i l~lls conta ini~lg  inonolayers 
o i  donor and acceptor chromopllores have 
lieen created in  which control of electron 

acceptorl-acceL~tor2-cic~~1i~r2 m o l e c ~ ~ l e  ( D -  
A1-A,-DL, Fig. 1 )  (18) in n.hich photoi11- 
d ~ ~ c e d  charge separation within one cionor- 

,, . 
nation occurs only within each indi~iciual 
donor-acceptor pair, D l - A ,  and A,-D,. 
Fifth, the free energies for photoinciuceJ 

transier was achieveci hy \,arying the layer 
coinpositloin separating the donors and ac- 
ceptors and hy the application id external 
fields (13.  14).  

Reccntlv, it was sholvn that the electric 

acceptor pair controls the rate constants for 
pl~otoinduccd cl-iarge separation anil therinal 
charge recombination lvithin a second do- 
nor-acceptor pair. Multiple 150-fs laser puls- 
es are used to selectivelv control and nrohe 

charge separation from the lorvest excited 
sinelet states of the donors within each Lxiir 
to their ~orres~oi-iciing acceptors shoulil he 
sufficie~ltly l-iegative to ensure r a p ~ d  rates of 
ion pair formation in the lo~v-polarity sol- 

dipole of a synthetic a-helical polypeptiile 
can intlucnce the rate of e1ectr011 transfe1. 

the gei-ieration of the tlvo ion pairs (1 9).  
For tl-ie electrlc fielci-incluced slvitcl-ii~lg 

vents necessary to support large electric 
fields. T h e  reiiox potentials for D l ,  A 1 ,  ,A2, 

between organic electron donors and accep- 
tors covalently attached to the polypeptide 
(15) .  T h e  electric fielci procl~~ceci l-ry a pho- 
ti>gei-ierated ion pair can, in t~~r i - i ,  have a 
large effect o n  the electronic states of sur- 
rouniling molec~~ les .  W e  have studieci co- 
valently linked ilonor-accepto1.-prohe mo- 
lecular arrays that ~~nciergo photoinduceil 
charge separation in < 10 ps in lorn-polarity 
sol\,ents (1 5 ,  17). These pllotogei-ierateJ 
donor t - accep to r  1011 pairs produce an  
electric field of 6 MV cm- ' ,  which shifts 
the optical ahsorption spectra of the  prohe 
molecules hy 5 to 15 11111. 

These results suggeat that it might he 
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p r d d  
and D?, as ~vell  as the lowest excited singlet- that k i  5 2 n p l .  Thus, the data in Fig. 2 the context of electron transter theory (27, 
state cncrgies for Dl  anii D, ,  fulfill the sLlggest that the slon. formation and decay 28) by consiiieri~~g the possible effects o t  
fourth and fltth rec~~~irements  (24). of the A,--D,' atate ia disrupted i l~~r i~- ig  the the electric tield proLiuced by D l f  -,Alp on  

S11-igle-p~1lse cxc~tat ion of Dl-A,-A,-D, short lifetime of the D l f  -,Alp state because the tree energy, thc total nuclear reorgani- 
in 1,4-dioxanc at clther 416 11111 ( '  D l )  or the elcctric tielcl gcnerateci Ihy the D l t - A l p  zation energy, and the electronic coupling 
512 11m ( '  D,) led to ion pair formation of state nlakcs recombination of the Alp-D2+ ~natr ix  elemcnt, V, tor the chargc recomhi- 
either Dl ' -Alp or A,--D,+,  respectively, state to the ground state (140 ps) consider- nation reaction. T h e  free cnergy for charge 
as was monitoreil at 480 I I ~  ( A l p )  or 713 al-rly faster than ti>rmation of thc ,Alp-D, scparatlon ~vi thln  A,p-D,' alonc, lGcS,  
lnln ( A 2 - )  (Fig. 2) .  Tlhc time constants for state (>500 ps). callnot he more ncgativc than -0.3 eV, as 
1011 pair formation anL{ Liecay of elthcr Dl'- T h c  nlcchanism of this electric field- eatinlatcd trom the lo\vest excited singlet- 
,Alp or A,--D,+ ~vi thin  Dl-AI-A?-DL are induced 10-fold incrcasc in the AZp-DZf  state energy of D,, the electrochemical po- 
similar to thosc olxcrveil for the Dl-,Al and rccomh~nation rate can he analyzed within tentials for one-electron oxidation and re- 
A,-D, reference c o m p o ~ ~ n d s  (Fig. 1).  In the 
two-pump p~llsc experiment, a siligle 5 12- 
11111 p111x again produccd Dl -A1-AZp-DZt .   IN^, = 700 ps, . . . . . . . One pump: 512 nm at o ps Fig. 2. Transent absorp- 

Probe: 713 nm tion kinetics ( I A )  of D,- T h e  transient absorption signal for A l p  Ad-A,-D, in 1,4-dioxane 
within Dl -AI -AZp-D2+ reached a maxi- 

mum at -700 ps after thc arrival of the excited with one pump 
pulse at 416 nm. one 

512-nm pulse. A t  that timc, a seco~ld 416- pump pulse at 512 nm, 
nm p~11se ~vas  useci to p r o d ~ ~ c c  ' D l - A I -  and two sequential pump 
A,p-D,', which ~~niicrrvcnt rapid electron pulses at 41 6 and 51 2 nm 
transfer from I D l  to yield Dl ' -Alp-A,p-  at the times ndcated. The 

D?'. The  solici curve in Fig. 2 docs not glven rate constants cor- 

direct1)- reflect the kinetics of thc D l  +-Al  g 
- respond to those labeled 

atate because o t  the cietection strategy ( 1  9) in Fig. 3. 

and hecause thc probe at 713 11m lnonltors 
the population of A l p  selectively. Instead, 
the effect o t  thc elcctric ficld generated by 
the D, ' - ,Al  state on  tile population of thc 
Alp-D,' state is observed (25) .  

A n  encrgetlc anti kinctlc schemc Lvaa 
useci to m d e l  the e lectr~c field etfcct (Fig. 
3 )  (24) .  T h e  basis tor the mociel is sl~llply 
that the rates of charge scpardtloll and rc- o.ooo Probe: 480 nm 

comhinatlon for each of the two ilonor- t I I I I 

acceptor pa r s  \\.ill hc different when the 0 1000 2000 3000 4000 

adjacent donor-acceptor pair 1s In a chargc- Probe delay (ps) 

separated state as opposed to thc ncutral 
state. These nelv electric fiel~l-moclifieil 
rate constal-its for electron transfer and re- 
cornbination arc represented by primes ill 

1 

Fig. 3. In c i d c l i t l ~ ~ ~ ,  the ahsorpt~on cross 
4 - sections for each species were varied to 

reflect thc possil~ility that the electric tielci 
generated hy one ion palr might shift thc 
electronic ahsorptlons o t  the ionic or ncu- 
tral dollor a~nd acceptor within tile othcr 3 - 
pair (26).  T h e  populations of all species 
were solvcil analytically anci useci to gener- z - ate the tit sho~vn  (smooth solid line 111 Fig. - 

> 2) .  T h e  ohservcd klnctics arc more sensitive 
g 2  to the electric field effect on  the rate of - 

recomhinatiol~ of the A,--D,+ state ( 1 ~ ' ~ )  
than to its etfcct 011 thc rate of formation of 
this statc (14) at pump pulse separation 
times of 1iuniGecis of picoseconcis. ~ h c  time 

1 - 
constant for recombination of the Al---DI' 
state to the grounci state in thc prescncc of 
the Dl'-L41p ion pair (l /kL,) is 140 2 30 
ps, ~vhereas ~ v l t h  the Dl -A,  pair in its ~ C L I -  

tral state the time constant for recoi-iibina- 0 
tlon of the A,p-D2' state (1/ltp2) 1s 1.3 11s. Dl-A1-A,-D, 

The  flts are 0 1 1 1 ~  weakly dcpelldent on !.ari- Fig. 3. Scheme used to mode the knetics of electron transfer in D,-A,-A,-D, in 1,4-doxane (24). Solid 
atlons In k i ,  and we were ~ ~ n a b l c  to deter- arrows depict ion pair formation, ion pair decay, and excted-state decay processes and are labeled with 
minc t h ~ s  parameter hcyond the restriction ther respective rate constants k. Photoexc~taton processes are depicted with dashed arrows 
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duction of DL and A,, respecti\.ely, and the 
Col~lomb intcractlon energy between the 
t ~ ~ o  ions (24). The  correspondillg free en- 
ergy for charge rccomhination, AGCR, can- 
not be lnorc positlve than -2.1 cV (24). 
Rapid, laser-indl~ced formation of D l t - A l p  
adjacent to Alp-D2+ changes thc total 
Coulombic interaction energy wlthln the 
ensernhle of four ions. As a result of the 
Coulornh interaction of the adjacent roll 
pairs, the cncrgy of thc Dl+-Alp-A2p-D,+  
state III l,4-dioxane is -0.21 cV grcakr 
than thc S L I ~  of the encrgics of the D l t -  
Alp-A,-D, anil DI-A1-A2p-D2L states. A 
pairwrsc breakdown of the Interaction en- 
ergies of the ions (Table 1 )  (29) shows that 
the A l p - A ,  and Dl t -D2+ ion pairs co11- 
trihute repulsion encrgics of 0.65 eV anil 
0.22 eV, respecti\~ely, hut this is largely 
compensated hy the attracti1.e forces ~ ~ l t h i n  
the D l f - A ,  and Alp-DLt pairs. If thc 
energy of the Dl+-Alp-A2p-D,+ statc is 
above that of Dl  +-Alp-A,-DL':', partial rc- 
poplllation of the D,+-A,--A2-DL:': state 
may occur, resulting in a11 increase 111 stlm- 
da ted  elnlssion fro111 D,':'. Howc\~er, there 
was no significant differellce (<5%) 111 the 
obserl~ed stimulated emisslon intensities 
from D,:': lnonitored at 553 nm between thc 
one-pump and two-pump experiments. In 
addition, the data in Frg. 2 could not he fit 
acc~~ratelv with the ~nclusron of a ~~rei iom- 
inant rate constant for repopulation of Dl + - 

A I - A  ,- D , :': 111 the kinetic modcl. Thcse 
results suggest that recolnbinatlon of A L p -  
DLt  to its grounci statc wlthin D , + - A l p -  
A,--D,+ is faster than cxcitcd-state re- 
population leading to Dlt-Alp-A,-D,':'. 

The free energy of the charge rccombi- 
nation reactloll within Alp-DLt is 2 . 1  
eV, and therefore this rcaction 1s lnost like- 
ly well L I I ~ O  the Marcus in\~ertcd regloll 
(27). Thus, dcstabiliiing A,--Dlt I-ry 0.21 
eV lnakcs AGCR more negatlve and should 
rcsult in a decrease 111 the charge recom1.i- 
natlon rate, not thc increase that is oh- 
served (27. 28). In addition, gcncratrng 
D l f - A l p  at a flxcd distance and oricnta- 
tion rclativc to Alp-D,+ within a low- 
polarity solvent should have a negligible 
effect on the total reorgalliratioll energy for 

Table 1. Energetcs of the Couon ib  nteracton 
between the adjacent o n  p a r s  In D , - A , - A , -  
D, ' In 1 ,4-d~oxane (25) 

Dstance 
Energy 

(A) 
sh~f t  

(ev) 

A,--A,- 12.2 +0.65 
A,--D,- 23 .4  0 . 3 4  
D, --A,- 25.1 0 . 3 2  
D, +-D,+ 36.3 +0.22 
Total +0.21 

charge recolnhination within Alp-D,+ 
(30). O n  the other hanil, the electronic 
coupling matrix element between A l p  and 
DL+ may he increased by electronic rcplll- 
sion hetween thc srngly occupicd nloleclllar 
orbltals in A ,  and A,-. Thrs incrcasc in V 
should result in an c17en larger illcrcase in 
the rate constant for charge recombination, 
ItcR, hccause V2 (27. 28). Analogol~s 
argluncnts call be made focusing on the 
rates of charge separation and recomhinu- 
tion within Dl  +-A1 - ,  which are influenced 
hy thc electrostatic effects of the Ions \vlth- 
In A,p-D,L.  

~ h l s  analysis suggests that thc rapid cre- 
ation of the D l + - A l p  dipole modlfles thc 
electronic en\71ronment in the vicinity of 
Alp-DLt. These en\~iro11111c11tal changes 
can he irnposeil in a rapid and controlled 
fashion by lncalls of ultrafast laser pulses. 
Even larger field effects lnlght bc obscr\,eil if 
the two donor-acceptor pairs are positiolled 
sldc hy sldc. Our results suggest that this 
type of rnolccular architecture has many of 
thc charactcristlcs reyuireil of a prototype 
lnoleclllar s ~ ~ t c h ,  the lllost notable of 
~vhich is thc rapld control of state switching 
by femtosecond optical pl~lscs. 
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lnterlayer Tunneling Models 
of Cuprate Superconductivity: 

Implications of a Recent Experiment 
A. J. Leggett 

It is shown that, given a few generic assumptions, any theory of high-temperature 
superconductivity that attributes a substantial fraction of the condensation energy to the 
saving of c-axis kinetic energy must predict an inequality relating the c-axis penetration 
depth X,(O),to the zero-temperature superconducting-normal energy difference and the 
fluctuations of the c-axis kinetic energy around its mean value. Application of this formula 
to TI,Ba,CuO, implies that if X,(O) is greater than 1 0  micrometers, as suggested by a 
recent experiment, these fluctuations must have an unusual form. 

Of the many and varied approaches to  the 
high-temperature supercondlucti\~ity ( H T S )  
prohleln currently a\,ailahlc, none is nlore 
no\~el  or intriguing than the interlayer tun- 
~le l ing (ILT)   nod el of Anderso~l  and co- 
workers (1-4). T h ~ s  lnodel rests o n  two 
major postulates: (i)  T h e  nor~na l  state of 
the electrons within a si~lgle C u 0 2  plane is 
different III nature from the traditional 
Landau Fcrrni liquid, and (ii)  as a result, 
single-particle tunneling het\veen the  CuO,  
planes is strongly inhibited in the normal 
phase; h o ~ ~ e \ , e r ,  in the s l~perconduct~ng 
phase, t~ulncling of palrs 1s posslhle and 
results in a strong decrease of the  c-axis 
k i n c t ~ c  energy T,. T h l ~ s ,  d e p e n d ~ ~ l g  o n  the  
part~cular \~ersion of the  ~nodc l  considered, 
either all or, a t  least in the  cuprates with 
hlghcr t ransi t~on temperatures TL, a large 
f r ac t~on  of the condensation energy 
( the  tilfference h e t ~ ~ c e n  the  .superconduct- 
i ~ l g  ground-state energy and the "best" nor- 
mal-state energy) comes from the decrease 
of (T,) (brackets denote expectatlon value) 
111 the superconducting state. In  thls report, 
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I shall take t h ~ s  last statement as the defi- 
nition of the  ILT model, irrespccti\,e of the 
way in which point ( i )  is ~ m ~ l e m e n t c d .  

T h e  ILT model has a numher of attrac- 
tive features. It explains In a natural way 
why all lnatcrlals known to  date with Tc > 
35 K ha1.c well-separated planes in which 
the  e lcct ro~l ic  behavior amears  to he two- 

A 

dilnensional (2D)  in  the  first approxima- 
t lon, and ~ 7 h y  despite the  apparent slml- 
larity of the  in-plane behavior, t he  values 
of Tc for the  \.arious cuprates vary by a 
factor of more than  20. T h e  ~ n o d c l  obvi- 
ates the  need for a n  anomalously strollg 
~n-p lane  attractloll mechanism, and it can  
he argued ( 2 )  to  he consistent with a 
variety of apparently purzl~ng experimen- 
tal properties of the  cupratcs, in particular 
( 4 )  ~ ~ i t h  the  normal- and s l lpercond~~ct-  
ing-state fin~te-frequency c -ax~s  conduc- 
tivity. It is therefore i~npor tan t  to  explore 
the  generic consequences of the  ILT mod- 
el and to cxalnlnc their compatibility with 
existing experimental data. 

For this purpose, I confine myself to 
those ("single-plane") cuprates in  which 
all pairs of neighboring C u O L  planes are 
cqui\~alent.  I n  this casc, \,arious 

imple~ne~ l t a t ions  of the  ILT rnodel [see 
espec~ally (3)] lead to a n  expression for 
the  T = 0 interplane coupling energy E,,,, 
(which in  these \,crsions IS t he  d~ffercncc 
between the  normal- and sllperconduct- 
ing-state \,slues of (T,)) that  is a special 
casc of the  Inore eeneral Lawrence- - 
Doniach (LD) expression (given for a par- 
ticular palr of planes i, i + 1 )  

\\here Am(',"') is the differetlce In the ~7hase 
8 z 

of the supercondl~cting order paralnetcr he- 
tween the  two planes in question, and K 
and J arc mater~al-dependent constants. In  
non-ILT theories, which simply regard the  
interplane tunneling process as described by 
the  original Josephson lnodel (5) for a tun- 
nel oxide harrier and nal\~ely apply the Am- 
hcgaokar-Baratoff expressions (6) ,  one finds 
that K = J, and hence in the  superconduct- 
ing gro~und state [A+,('"') = 01, no appre- 
clahle energy is sa\~ed by tunneling. H o v -  
e17cr, in the current form of the  ILT model 
(3.  4 ) ,  K is to be zero, or at any 
rate, K << J. If this is so, one obtains a 
relation hetween the savlng of c-ax~s kinetic 
energy in the superconducting gro~und state, 
ATj;', and the T = 0 c-axis superfluid den- 
sity p,,: for K = 0 

where m is the  electron Inass and d is the  
interplanar spacing. In the  ILT model, AT'? 
supplies a substantial fraction of the su- 
perconducting condc~ l sa t~on  energy, \vhich, 
as pointed out by Anderson (4 ) ,  leads to a 
definite prediction for the  T = 0 c-axis 
penetration depth A (0).  For our purposes, - 
it IS conl~enient  to write this prediction in 
the form 

where c IS the speed of l ~ g h t ,  E c,,,,, is the  
superco~lductlng condensation energy per 
formula unit, ac is the Bohr radius, and A is 
the area per formula unit. (The  precise dcf- 
i n i t ~ o n  of hlLT IS chosen with a 17ica. to 
giving Eq. 7 he lo^^ a sunple form.) A casc 
of particular interest is TlzBazCuO, (Tl-  
2201), where A,,, -1.8 pm.  Recently, van 
der Marc1 e t  al. (7) concluded, o n  the basis 
of the absence of a c-axis plasmon peak in 
their optical rcflccti\,ity measurements, that 
A,(@) must he >10 p m .  From Eq. 3, this 
implies that 7 < 0.01 in this material; t h ~ s  
conclusion holds for any positi17e \ d u e  of K 
in Ecl. 1. 

A value of A,(@) > 10 p m  in T1-2201, if 
confirmed, would thus seem to refute defin- 
iti\,cly any \,crsion of the ILT model, such 
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