
(Fig. 3A),  several lakcs show up as small, 
dark arcas, whereas thc same lakes appear as 
bright features in the October image (Fig. 
38). The chanec in sienature indicates that - - 
the lakcs lnay have drained over the period 
from Septenlbcr to Octobcr, causing thc ice 
on thc surfacc to collapse. The lakc basins 
arc regions of low corrclation (16) in thc 
October interferogram (Fig. 2C), indicating 
that they underwent substantial surface 
change during the l-day period, such as 
\vould be caused bv drainaee-induced frac- " 
turing of the icc on the lake surface. This 
suggests that the probable drainage of the 
lakes was related in solnc way to the in- 
crcasc in velocity. 

In thc arca ncar lakobshavns Isbrae. sev- 
eral lakes periodically drain through 'large 
~noulins (1 7). Thesc nloulins closc off dur- 
ing the winter, when therc is no nlcltwater 
input from thc surface. Aftcr a lakc forms in 
thc summer, mcltillg and watcr prcssurc 
reopen thc moulin, allowing drainage. 
Solllc similar process, such as high basal 
watcr pressure opcning or enlarging con- 
nections to the surface, nlay allow thc lakes 
on thc Rvdcr to drain near the end of the 
mclt season. The  increase in meltwater ac- 
cess to thc bcd might play a role in greater 
slidine vclocitv. 

~Gernativc'ly, thc incrcasc in velocity 
could hakc opened crevasses, allowing the 
lakes to drain. I11 this casc. lakc draillaec is " 
an effect rather than a causc of thc rapid 
flow. and thc flow instabilitv could be 
caused by changes in the basal water systcln 
alonc. Onc  possiblc scenario is that the 
presu~ned bedrock ridge causes ponding of 
subglacial water beneath thc icc plain. This 
may takc placc if the upstrcaln sidc of the 
bedrock ridgc is 10 tilncs stccpcr than the 
rclativcly low icc surfacc slopc driving basal 
water downstrcarn (18). Basal water pres- 
sure may increase to the point at which 
stablc sliding is no longcr possiblc and a 
mini-surge begins. 

Wc  do not know if mini-surges arc corn- 
lnon (perhaps seasonal) on the Ryder or 
other outlet glaclcrs. We also do not know 
if this is an indication of potential for a 
Inore profound flow instability, such as a 
surge, which could produce a substantial 
change in ice flux. Surging glaciers arc 
known to shut down and restart (8). Per- 
haps what wc obscrvcd on the Rydcr was a 
surgc that did not quitc succced. 
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Observations of Near-Zero Ozone 
Concentrations Over the Convective Pacific: 

Effects on Air Chemistry 
D. Kley," P. J. Crutzen, H. G. J. Smit, H. Vomel, S. J. Oltmans, 

H. Grassl, V. Ramanathan 

A series of measurements over the equatorial Pacific in March 1993 showed that the 
volume mixing ratios of ozone were frequently well below 10 nanomoles per mole both 
in the marine boundary layer (MBL) and between 10 kilometers and the tropopause. 
These latter unexpected results emphasize the enormous variability of tropical tropo- 
spheric ozone and hydroxyl concentrations, which determine the oxidizing efficiency of 
the troposphere. They also imply a convective short circuit of marine gaseous emissions, 
such as dimethyl sulfide, between the MBL and the uppermost troposphere, leading, for 
instance, to sulfate particle formation. 

Bccausc of thc reactions 

Oj  + hv(h <320nm)  + O('L)) + 0 2  ( R l )  

O( 'D) + H Z O  + 2 0 H  (R2) 
where h is Planck's constant, v is frequency, 
and X is wavelength, ozone ( 0 3 )  is thc 
prccursor molcc~~lc  for hydroxyl (OH)  rad- 
icals (1 ), thc atmosphere's main oxidizing 
agcnt. The small fraction of atmospheric 0, 
that is located in the troposphcrc thus plays 
a large role in the cllcmical composition of 
thc atmosphere. In thc stratosphere, pho- 
tolysis of lnolccular oxygcn (OL)  fnrrns 0 3 ,  
of \vhich a fraction is transported mostly to 

the extratropical troposphcrc (2). 
In the troposphere, reactions R1 + R2, 

and, in addition, reactions 

CO + O H  + H + C02 (R3) 

H + 0, + M + HO, + M (R4) 

HO, + O3 + O H  + 2 0 2  (R5) 

net: O3 + CO + C02 + 0 2  

arc rcsponsible for Oj  destruction (3). In 
the oceanic atmosphcrc, c~nissions of nitric 
oxide (NO)  from the surfacc and lightning 
are small. With measured N O  volume mix- 

SCIENCE * VOL. 274 * 11 OCTOBER 1996 



ing ratios 111 the lolv picornole per mole 
range, 0, productton is insignificant In the 
IvfBL anii probahly also above tt ( 3 ,  4) .  
Moreover, ovcr the  equatorial oceans, 0, 
iiestructton by reactions R1 an<{ R2 is 
strongly protnotcd by high levels of solar 
~ ~ l t r a v ~ o l e t  radiation anii high humii{ity, re- 
sl~ltillg in a photochemical lifetillle for 0, 
of less than 1 week in the  IvfBL (5) .  '4s a 
conseilucncc, surface 0, concentrations be- 
lo~v  10 nmol/~nol  have heen measured 011 

. a t t o ~ ~ s  occasions ovcr the  tropical oceans v, . 
(5-8). Horvevcr, because of the strong ex- 
vonential decrease of water vaoor ~n ix ine  
ratios with altitude, 0: lifetimes increase 
rapidly ~ v i t h  height, to 1 month a t  6 k ~ i i  and 
1 year a t  10 km. Therefore, above the  MBL, 
0, may act as a tracer for convective trans- 
port. W e  report here a set of 25 O,, water 
\,aport and tcrnpcrature p-ofile measure- 
ments over the  tropical central Pacific oh- 
taineJ between 7 and 26 March 1993 (Fig. 
I ) ,  which often show low 0, concentra- 
tions hot11 in the MBL and, most surnris- 
ingly, also in the  upper troposphere ( 9 ) .  

T h e  Central Eclu,ltorial Pacific Expcri- 
lncnt (CEPEX) ( 10, 1 1 ) prol~ldcd an  oppor- 
tunity to gather information o n  0, and 
water vapor concentrations in one of the 
Earth's most convective regions and its sur- 
ri)undings. Balloon-home soundings were 
~ n a d c  fl-oni the ship Vrclcers betn~ecn the 
Solomon Islands (9"24'S, 160°6'E) anJ  
Chrlstlnas Island (LON, 1 57"301W), mostly 
along 2"s.  Satellite observations and mete- 
orological analysis for the  cruise gave evi- 
dence of \viclespread deep convecttve activ- 
ity fi-om 160°E to arrroxi~natel\l the date- 

- - 

line (1 2 ) .  Wi th  some exceptions, con17ec- 
tively suppressed conditions prevailed 
thereafter during the cruise and s~rbsecluent- 
1~ over Christ~nas Island. W e  ohtaincd pro- 
files of temperature, pressure, and relative 
h ~ u n ~ d i t y  every 6 hours for a total of 44 
so~mdings, me sing radiosondes from the ship 
(13) .  Sixteen successf~~l 0, soundings were 
made from the ship and nine more from a 
location o n  Christmas Island (14) .  

T h e  volume mixing ratiijs of 0, in the 
MBL along the  cruise track and those from 
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Christnlas Island were conststentlv helow 
10 nmol/mol and o n  several occastons Lvere 
helo~v the iietection l i~n l t  of 3 to 5 nmol/ 
mol (Fig. 1 ) .  Recause of 0, destrl~ction in 
the MRL by reactions R1 through R5, sur- 
face 0, nlixlng ratios are l o ~ v  in this region 
(5-8). T h e  middle troposphere was charac- 
terized hy some~vhat higher, hut still lorv, 

mixing ratios. Extremely l o ~ v  O3 lnixing 
ratios of 0 to 10  nmol/mol were measured in 
the  ~ ~ p p e r ~ n o s t  troposphere west of the date- 
line (profiles 1, 2, and 3) atxi o n  several 
occasions thereafter (profiles 5, 11, 14, and 
16).  Betlveen the dateline and 1 7 j 0 W ,  mix- 
ing ra t~os  were higher, hut still relat~vely 
low (helo~v 25 nmol/mol), in the upper 

Fig. 1. Vertical profiles of temperature from 180 to 300 K (dashed lines), 0, mlxlng rato from 0 to 100 
nmol/mo (sol~d lines), and relative humidity (0 to 100%) over water above 0°C and Ice below 0°C (dotted 
lines) along the cruse track of the Vickers, 7 to 18 March 1993 (profiles 1 through 16), and over 
Christmas Island, 20 to 26 March 1993 (profiles 17 through 25). Temperature, relatve hum~dity, and 0, 
m~xing ratlo scales are given on the abscissa. The altitude, in k~lometers, IS gven on the ordinate. The 
humidities for profiles 1 through 16 were measured with HUMICAP H sensors and those for soundngs 
18, 19, 22, 24. and 25 with HUMCAP A sensors. For profiles 17. 20, 21, and 23, frost-point hygrom- 
eters were used. Ozone and humidity measurements for profiles 17 through 25 were made simulta- 
neously. Water and O3 soundings for profiles 1 through 16 were made with a tlme delay of 2 2 2 hours. 
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troposphere (profiles 6 through 9 ) .  
During soundings 1 and 3, the tropo- 

sphere was characterized by active deep 
convection to the  tropopause. T h e  low O3 
mixing ratios above 10  km were accompa- 
nied by relative humidity over ice exceed- 
ing 70% (Fig. 1 ) .  In fact, a relative humidity 
of 100% is possible within the ~~ncer t a in ty  
limlts of the measurements 11 3 .  15) .  A n  
exception was sounding 2, where low O3 
lnixillg ratios in the  upper troposphere co- 
incided with low relative humidities 11 5).  ~, 

T h e  extremely loev upper tropospheric 
0,  nixing ratlos suggest that convection 
had lifted low-level 0 , -poor  MBL air to the 
~~ppermos t  troposphere without significant 
entrainlnent betwee~l  altitudes. Neverthe- 
less, repeated observations of zero, or near- 
zero, Oj  in the upper troposphere at values 
below those in the  MBL indicate that 0, 
might be destroyed in clouds (1 6 ,  17). T h e  
low 0, volume lnixing ratios LIP to the  
tropopause and the  extrclnely steep increase 
in the  values above the  trononause in the . . 
convective situations indicate that the  air 
flow cvas upcvard in the  tropopause region, 
counteracting downcvard di f f~~sion of 0, - 
from the stratosphere. 

East of the  dateline, the air cvas dry 
between 5 and 10 km. relative humidities 
were as low as 10%, and 0, mixing ratios 
reached abhut 25 nmol/mol. During thls 
part of the  cruise, the  troposphere was un- 
der conditions of suppressed convection 
( I  1 ). Hocvever, here three examples of ex- 
tremely low O3 vol~une nlixillg ratios were 
encountered near the  tropopause, including 
several near-zero readings (soundings 11, 
14, and 16) .  T h e  meridional winds cvere 
from the south at sneeds of 10 to 15 rnls for 
the  air lnasses that shocved the  locv O3 
values. T h e  Geostationary Operational En- 
vironlllental Satellite/Geostationary Mete- 
orological Satellite (GOESIGMS) infrared 
images identified convective regions ap- 
proximately 1 day upcvind to the south of 
the locations where the 0, and water vapor 
soundings cvere made (1 1 ). Therefore, those 
sampled air masses represent lateral out- 
flows from regions cvith strong convection. 
It 1s thus likely that cases of low upper- 
tropospheric 0, are the  result of deep con- 
vection elsecvhere as well. 

Several soundings over the convectively 
s~~ppressed region show colnparatively high 
0, mixing ratios several kilometers helow 
the tropopause. This rcs~llt  was especially 
pronounced for the  Chrlstlnas Island pro- 
files (soundings 17 through 25).  Because 
the MBL 0, mixing ratios are as small as 
those over the  convective region, this sug- 
gests stratospherlc i l l f l~~x  as the  source of 
the elevated tropospheric 0, layers. 

T h e  low O3 and N O  concentrations and 
the strong reflection of solar radiation from 

the anvll cloud deck lead to locver OH con- 
centrations than elsecvhere in the tropical 
troposphere. In the more convective parts of 
the marine tronics. this effect cvill result in 

L ,  

red~lced chemical removal rates of gases that 
are released to the atlnosnhere from the 
ocean. Box lnodel calculations for a convec- 
tive situation, based o n  a complete set of 
chemical measurements 17). indicate that , , 

the 12-hour average OH concentration was 
merely 5 x 10' molecules per cubic centl- 
meter (18). This result implies that the pho- 
tochemical lifetime of dimethyl sulfide 
(DMS) is 10 days, cvhich exceeds the average 
boundary-layer evacuation time of about 5 to 
10 days over the equatorial Pacific (19) .  
Therefore. substalltial amounts of this pas 
may escape oxidation in the MBL and reach 
the upper troposphere over convective re- 
gions. Thus, DMS may influence sulfate 
aerosol formation (20) in the  upper tropo- 
sphere and stratosphere. Observations of di- 
methyl sulfide [(CH,);S] over the tropical 
Pacific have identified the presence of this 
short-lived compound in the MBL in mixing 
ratios from 50 to 500 pl~lol/lnol (21 ) .  Anoth- 
er oceanic emission comnound that lnav 
reach the upper troposphere is methyl iodide 
(CH,I) (17),  which after photodissociation 
may produce I and 10, possibly leading to 
catalytic O3 destruction (17, 22).  

Our  data iiemonstrate the  large variabil- 
ity of 0, concentrations In the  troplcal 
troposphere. Concentrations can exceed 50 
n1n01/1n01 over the continents iiurine the  
dry season (23,  24) alld can approach zero 
levels in the MBL and in the upper tropo- 
sphere in convective regions over the trop- 
ical Pacific. This res~llt also implies that 
OH concentrations vary bv an  order of , , 
m a g n i t ~ ~ d e  in the tropics and thus that 
there are major smtial  and t e m ~ o r a l  fluctu- " L 

ations in the oxidizing efficiency of the 
atmosphere, which is largely deterlnined by 
O H  radicals in the  tropical troposphere. 
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HOi (gas) -, H02 (aq) -, Hi + 0 2  (R9) 
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0, loss. appears unlikely. 

17. It has been proposed that reactions invovng Iodine 
radicals derived from CH,I, play a role in tropospher~c 
0, destruction [D. D. Davls et a/., J Geophys. Res 
101. 2135 (1996)I. 

18. For the calculation of OH production rates we used 
the following parameters: water vapor mixng rato = 

18 g/kg (15): 0, mixing ratios = 5 nmoI/mo (Fig. I ) ;  
CO = 75 nmo/mol: and CH, = 1.70 ~mo l /mo l  p. J. 

Bates, K. C. Kelly, J. E. Johnson, J. Geophys. Res. 
98, 16969 (1 99311. Measured durnal values of the 0, 
photodissociation coefficient [J(OID)] for the for- 
mation of O('D) atoms according to reactlon R1, 
under conditions of actve convection in the Inter- 
t r opca  Convergence Zone of the Atlantc, were 
taken from A. Hofzumahaus, T. Brauers, U. Platt, 
and J. Ca les  [J. Atmos Chem 15,  283 (1992)l. 
The 12-hour average was J (0 'D )  = 8.2 X 10 per 
second. The total 0, column denstes were about 
275 Dobson units for the Atlantc cruse and for 
CEPEX as well. Therefore the Atlantic and the 
CEPEX relevant J values should be smiar .  
We calculated the boundary layer evacuation tlmes 
for the CEPEX region usng the National Center for 
Atmospher~c Research CCM3 model (P. Rasch. per- 
sonal communicat~on) from monthly mean MBL a r  
masses and the upward component of the deep 
convective mass fluxes. 
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Flow-Induced Molecular Orientation 
of a Langmuir Film 

Takayuki Maruyama, Gerald Fuller," Curtis Frank, 
Channing Robertson 

The two-dimensional fluid dynamics of the different phases of a fatty acid monolayer 
(docosanoic acid) were examined. Brewster angle microscopy was used to investigate 
the polydomain structure of two "liquid condensed" phases (the L, and L; phases) and 
the "solid" (S) phase in situ during an extensional flow. Only the L, phase deformed 
affinely with a liquid-like response. The two other phases experienced flow-induced 
reorientation of the lattice onto which the molecules were arranged. The reorientation 
process was accompanied by the appearance of shear bands in the monolayers at an 
angle of 1 4 5  degrees to the extension axis of the flow. 

T h e  flow behavior of monolayers at fluid- 
fluid interfaces is of f~~ndamenta l  and tech- 
nological significance, and this subject has 
been reviewed at a micromechanical level by 
Edwards et al. ( I ) .  T h e  influence of hydro- 
dynamic forces on monolayers becomes ap- 
parent when their rheological responses are 
considered. These resnonses are often non- 
Newtonian, and shear-thinning surface vis- 
cosities are commonly encountered (2 ,  3) ,  
providing indirect evidence of flow-induced 
microstructural deformation and orientation 
cvithin the layer. However, in most of the 
earlier work in surface rheology it has been 
assumed that the monolayers can sustain 
uniform flow fields. Moreover, the approach- 
es have been predominantly concerned with 
macroscopic properties, such as the surface 
shear viscosity and modulus. T h e  fact that 
most interfaces contain mesoscopic domain 
structures and orientatable molecules has of- 
ten been neglected. 

Measurements of flow-induced orienta- 

cvhere the material exposed to flocv has 
been fixed to a solid substrate (4, 5).  How- 
ever, such an  approach does not readily 
lend itself to the examination of transient 
phenomena, and the applied flocv fields are 
usually inhomogeneous. Here, eve used in 
situ measurements of molecular orientation 
a t  the fluid-fluid interface and used homo- 
geneous flocv fields with cvell-characterized 
velocity gr a d '  lents. 

T h e  subject of this investigation cvas do- 
cosanoic acid, a fatty acid that has been ex- 
tensively studied cvith respect to its eyuilibri- 
urn phase behavior when residing as a mono- 
layer at the air-cvater interface. Pressure-area 
isotherms of Langmuir films reveal a number 
of phase transitions, and the corresponding 
structures have been examined by x-ray dif- 
fraction (6). The  latter measurements re- 
vealed the existence of mesophases having 
positional order but not translational order. 
A t  the temperature used in this study (1 joC) ,  
two distinct, first-order transitions were evi- 
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transition separates the L; phase from the S or 
"solid" phase. The  L2 phase has the head 
groups of the molecule on a distorted, hexag- 
onal lattice with the alkyl chains' tails tilted 
at an anele tocvard their nearest lattice neigh- - 
bar. As the monolayer is compressed, the tilt 
a11gle diminishes in magnitude, and across the 
transition the tilt direction switches toevat-d 
the next nearest neighbor. As the monolayer 
enters the S phase, the tilt angle tends to zero 
and the alkyl chains are perfectly upright, but 
the head groups remain arranged on the dis- 
torted, hexagonal lattice. 

T h e  tilting of the  alkyl tails of docosano- 
ic acid makes Brewster angle microscopy 
IBAM) 17. 8) a convenient method with , , 

which to view the polydomain structure of 
this system. This optical probe uses light 
polarized in the plane of incidence that is 
reflected from the interface at the  Brewster 
angle O R  for the  substrate (water, in the  case 
of our Langrnuir films). T h e  presence of a 
thin film at  the interface cvill cause the 
Brecvster condition to be violated and llght 
will be reflected. If the  film consists of 
domains characterized bv uniuue refractive 
indices, the  reflected light cvill reveal the  
film morphology. T h e  reflected light is 
viecved through an  analyzing polarizer set to 
a n  angle a relative to the plane of inci- 
dence. A n  anele w. = 60" cvas found to 
optimize the contrast in the  polydomain 
structure. T o  calculate the reflected light 
intensitv. it is necessarv to evaluate the  , , 
matrix of reflection coefficients R,], ( i ,  j )  = 
p or s, where p and s refer to light polarized 
parallel and perpendicular to the  plane of 
incidence, respectively. Of interest are the  
off-diagonal coefficients, RIIs and R,,>, cvhich 
measure the  tendency to convert p-polar- 
ized lieht to s nolarization, and vice versa. 

tion at the molecular level have normally dent in pressure-area isotherms: one at a sur- T h e  measured intensity is 
been performed o n  Langmuir-Blodgett films face pressure of a = 14.5 mN m p '  and the 

at a = 27.5 lnN m - l ,  The 1 = Mco" a l R , , , , ~ ~  + sin? w. lRJ  
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ty. Stanford, CA 94305-5025, USA. two "liquid condensed" phases, denoted as the 
-To whom correspondence should be addressed. L, and Li phases, respectively. The  second where lo is the  incident light intensity and 
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