(Fig. 3A), several lakes show up as small,
dark areas, whereas the same lakes appear as
bright features in the October image (Fig.
3B). The change in signature indicates that
the lakes may have drained over the period
from September to October, causing the ice
on the surface to collapse. The lake basins
are regions of low correlation (16) in the
October interferogram (Fig. 2C), indicating
that they underwent substantial surface
change during the 1-day period, such as
would be caused by drainage-induced frac-
turing of the ice on the lake surface. This
suggests that the probable drainage of the
lakes was related in some way to the in-
crease in velocity.

In the area near Jakobshavns Isbrae, sev-
eral lakes periodically drain through large
moulins (17). These moulins close off dur-
ing the winter, when there is no meltwater
input from the surface. After a lake forms in
the summer, melting and water pressure
reopen the moulin, allowing drainage.
Some similar process, such as high basal
water pressure opening or enlarging con-
nections to the surface, may allow the lakes
on the Ryder to drain near the end of the
melt season. The increase in meltwater ac-
cess to the bed might play a role in greater
sliding velocity.

Alternatively, the increase in velocity
could have opened crevasses, allowing the
lakes to drain. In this case, lake drainage is
an effect rather than a cause of the rapid
flow, and the flow instability could be
caused by changes in the basal water system
alone. One possible scenario is that the
presumed bedrock ridge causes ponding of
subglacial water beneath the ice plain. This
may take place if the upstream side of the
bedrock ridge is 10 times steeper than the
relatively low ice surface slope driving basal
water downstream (I18). Basal water pres-
sure may increase to the point at which
stable sliding is no longer possible and a
mini-surge begins.

We do not know if mini-surges are com-
mon (perhaps seasonal) on the Ryder or
other outlet glaciers. We also do not know
if this is an indication of potential for a
more profound flow instability, such as a
surge, which could produce a substantial
change in ice flux. Surging glaciers are
known to shut down and restart (8). Per-
haps what we observed on the Ryder was a
surge that did not quite succeed.
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Observations of Near-Zero Ozone
Concentrations Over the Convective Pacific:
Effects on Air Chemistry

D. Kley,* P. J. Crutzen, H. G. J. Smit, H. Vémel, S. J. Oltmans,
H. Grassl, V. Ramanathan

A series of measurements over the equatorial Pacific in March 1993 showed that the
volume mixing ratios of ozone were frequently well below 10 nanomoles per mole both
in the marine boundary layer (MBL) and between 10 kilometers and the tropopause.
These latter unexpected results emphasize the enormous variability of tropical tropo-
spheric ozone and hydroxyl concentrations, which determine the oxidizing efficiency of
the troposphere. They also imply a convective short circuit of marine gaseous emissions,
such as dimethy! sulfide, between the MBL and the uppermost troposphere, leading, for

instance, to sulfate particle formation.

Because of the reactions
O;+hv(A<320nm) — O('D) + O, (R1)
O('D) + H,O — 20H (R2)

where h is Planck’s constant, v is frequency,
and X\ is wavelength, ozone (O;) is the
precursor molecule for hydroxyl (OH) rad-
icals (1), the atmosphere’s main oxidizing
agent. The small fraction of atmospheric O,
that is located in the troposphere thus plays
a large role in the chemical composition of
the atmosphere. In the stratosphere, pho-
tolysis of molecular oxygen (O,) forms O;,
of which a fraction is transported mostly to
SCIENCE
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the extratropical troposphere (2).
In the troposphere, reactions R1 + R2,
and, in addition, reactions

CO+OH—H+CO, (R3)
H+O,+M—HO, +M (R4)
HO, + O; = OH + 20, (R5)

net: O3 + CO — CO, + O,

are responsible for Oj destruction (3). In
the oceanic atmosphere, emissions of nitric
oxide (NO) from the surface and lightning
are small. With measured NO volume mix-
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ing ratios in the low picomole per mole
range, O, production is insignificant in the
MBL and probably also above it (3, 4).
Moreover, over the equatorial oceans, O,
destruction by reactions R1 and R2 is
strongly promoted by high levels of solar
ultraviolet radiation and high humidity, re-
“sulting in a photochemical lifetime for O,
of less than 1 week in the MBL (5). As a
consequence, surface O; concentrations be-
low 10 nmol/mol have been measured on
various occasions over the tropical oceans
(5-8). However, because of the strong ex-
ponential decrease of water vapor mixing
ratios with altitude, O; lifetimes increase
rapidly with height, to 1 month at 6 km and
1 year at 10 km. Therefore, above the MBL,
O, may act as a tracer for convective trans-
port. We report here a set of 25 O, water
vapor, and temperature profile measure-
ments over the tropical central Pacific ob-
tained between 7 and 26 March 1993 (Fig.
1), which often show low O; concentra-
tions both in the MBL and, most surpris-
ingly, also in the upper troposphere (9).

The Central Equatorial Pacific Experi-
ment (CEPEX) (10, 11) provided an oppor-
tunity to gather information on O; and
water vapor concentrations in one of the
Earth’s most convective regions and its sur-
roundings. Balloon-borne soundings were
made from the ship Vickers between the
Solomon Islands (9°24'S, 160°6'E) and
Christmas Island (2°N, 157°30"W), mostly
along 2°S. Satellite observations and mete-
orological analysis for the cruise gave evi-
dence of widespread deep convective activ-
ity from 160°E to approximately the date-
line (12). With some exceptions, convec-
tively suppressed conditions prevailed
thereafter during the cruise and subsequent-
ly over Christmas Island. We obtained pro-
files of temperature, pressure, and relative
humidity every 6 hours for a total of 44
soundings, using radiosondes from the ship
(13). Sixteen successful O soundings were
made from the ship and nine more from a
location on Christmas Island (14).

The volume mixing ratios of O; in the
MBL along the cruise track and those from
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Christmas Island were consistently below
10 nmol/mol and on several occasions were
below the detection limit of 3 to 5 nmol/
mol (Fig. 1). Because of O; destruction in
the MBL by reactions R1 through R5, sur-
face O, mixing ratios are low in this region
(5-8). The middle troposphere was charac-
terized by somewhat higher, but still low,

= REPORTS

mixing ratios. Extremely low O; mixing
ratios of O to 10 nmol/mol were measured in
the uppermost troposphere west of the date-
line (profiles 1, 2, and 3) and on several
occasions thereafter (profiles 5, 11, 14, and
16). Between the dateline and 173°W, mix-
ing ratios were higher, but still relatively
low (below 25 nmol/mol), in the upper
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Fig. 1. Vertical profiles of temperature from 180 to 300 K (dashed lines), O, mixing ratio from 0 to 100
nmol/mol (solid lines), and relative humidity (O to 100%) over water above 0°C and ice below 0°C (dotted

lines) along the cruise track of the Vickers, 7 to

18 March 1993 (profiles 1 through 16), and over

Christmas Island, 20 to 26 March 1993 (profiles 17 through 25). Temperature, relative humidity, and O,

mixing ratio scales are given on the abscissa. The

altitude, in kilometers, is given on the ordinate. The

humidities for profiles 1 through 16 were measured with HUMICAP H sensors and those for soundings

18, 19, 22, 24, and 25 with HUMICAP A sensors.

For profiles 17, 20, 21, and 23, frost-point hygrom-

eters were used. Ozone and humidity measurements for profiles 17 through 25 were made simulta-
neously. Water and O, soundings for profiles 1 through 16 were made with a time delay of 2 = 2 hours.
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troposphere (profiles 6 through 9).

During soundings 1 and 3, the tropo-
sphere was characterized by active deep
convection to the tropopause. The low O;
mixing ratios above 10 km were accompa-
nied by relative humidity over ice exceed-
ing 70% (Fig. 1). In fact, a relative humidity
of 100% is possible within the uncertainty
limits of the measurements (13, 15). An
exception was sounding 2, where low O,
mixing ratios in the upper troposphere co-
incided with low relative humidities (15).

The extremely low upper tropospheric
O, mixing ratios suggest that convection
had lifted low-level O;-poor MBL air to the
uppermost troposphere without significant
entrainment between altitudes. Neverthe-
less, repeated observations of zero, or near-
zero, O; in the upper troposphere at values
below those in the MBL indicate that O,
might be destroyed in clouds (16, 17). The
low O, volume mixing ratios up to the
tropopause and the extremely steep increase
in the values above the tropopause in the
convective situations indicate that the air
flow was upward in the tropopause region,
counteracting downward diffusion of O,
from the stratosphere.

East of the dateline, the air was dry
between 5 and 10 km, relative humidities
were as low as 10%, and O, mixing ratios
reached about 25 nmol/mol. During this
part of the cruise, the troposphere was un-
der conditions of suppressed convection
(11). However, here three examples of ex-
tremely low O, volume mixing ratios were
encountered near the tropopause, including
several near-zero readings (soundings 11,
14, and 16). The meridional winds were
from the south at speeds of 10 to 15 m/s for
the air masses that showed the low O,
values. The Geostationary Operational En-
vironmental Satellite/Geostationary Mete-
orological Satellite (GOES/GMS) infrared
images identified convective regions ap-
proximately 1 day upwind to the south of
the locations where the O and water vapor
soundings were made (11). Therefore, those
sampled air masses represent lateral out-
flows from regions with strong convection.
It is thus likely that cases of low upper-
tropospheric Oj are the result of deep con-
vection elsewhere as well.

Several soundings over the convectively
suppressed region show comparatively high
O, mixing ratios several kilometers below
the tropopause. This result was especially
pronounced for the Christmas Island pro-
files (soundings 17 through 25). Because
the MBL O, mixing ratios are as small as
those over the convective region, this sug-
gests stratospheric influx as the source of
the elevated tropospheric Oy layers.

The low O, and NO concentrations and
the strong reflection of solar radiation from
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the anvil cloud deck lead to lower OH con-
centrations than elsewhere in the tropical
troposphere. In the more convective parts of
the marine tropics, this effect will result in
reduced chemical removal rates of gases that
are released to the atmosphere from the
ocean. Box model calculations for a convec-
tive situation, based on a complete set of
chemical measurements (7), indicate that
the 12-hour average OH concentration was
merely 5 X 10° molecules per cubic centi-
meter (18). This result implies that the pho-
tochemical lifetime of dimethyl sulfide
(DMS) is 10 days, which exceeds the average
boundary-layer evacuation time of about 5 to
10 days over the equatorial Pacific (I19).
Therefore, substantial amounts of this gas
may escape oxidation in the MBL and reach
the upper troposphere over convective re-
gions. Thus, DMS may influence sulfate
aerosol formation (20) in the upper tropo-
sphere and stratosphere. Observations of di-
methyl sulfide [(CH,),S] over the tropical
Pacific have identified the presence of this
short-lived compound in the MBL in mixing
ratios from 50 to 500 pmol/mol (21). Anoth-
er oceanic emission compound that may
reach the upper troposphere is methyl iodide
(CH,I) (17), which after photodissociation
may produce I and IO, possibly leading to
catalytic O destruction (17, 22).

Our data demonstrate the large variabil-
ity of O; concentrations in the tropical
troposphere. Concentrations can exceed 50
nmol/mol over the continents during the
dry season (23, 24) and can approach zero
levels in the MBL and in the upper tropo-
sphere in convective regions over the trop-
ical Pacific. This result also implies that
OH concentrations vary by an order of
magnitude in the tropics and thus that
there are major spatial and temporal fluctu-
ations in the oxidizing efficiency of the
atmosphere, which is largely determined by
OH radicals in the tropical troposphere.
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Flow-Induced Molecular Orientation
of a Langmuir Film

Takayuki Maruyama, Gerald Fuller,* Curtis Frank,
Channing Robertson

The two-dimensional fluid dynamics of the different phases of a fatty acid monolayer
(docosanoic acid) were examined. Brewster angle microscopy was used to investigate
the polydomain structure of two “liquid condensed” phases (the L, and L, phases) and
the “solid” (S) phase in situ during an extensional flow. Only the L, phase deformed
affinely with a liquid-like response. The two other phases experienced flow-induced
reorientation of the lattice onto which the molecules were arranged. The reorientation
process-was accompanied by the appearance of shear bands in the monolayers at an
angle of =45 degrees to the extension axis of the flow.

The flow behavior of monolayers at fluid-
fluid interfaces is of fundamental and tech-
nological significance, and this subject has
been reviewed at a micromechanical level by
Edwards et al. (1). The influence of hydro-
dynamic forces on monolayers becomes ap-
parent when their rheological responses are
considered. These responses are often non-
Newtonian, and shear-thinning surface vis-
cosities are commonly encountered (2, 3),
providing indirect evidence of flow-induced
microstructural deformation and orientation
within the layer. However, in most of the
earlier work in surface rheology it has been
assumed that the monolayers can sustain
uniform flow fields. Moreover, the approach-
es have been predominantly concerned with
macroscopic properties, such as the surface
shear viscosity and modulus. The fact that
most interfaces contain mesoscopic domain
structures and orientatable molecules has of-
ten been neglected.

Measurements of flow-induced orienta-
tion at the molecular level have normally
been performed on Langmuir-Blodgett films
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where the material exposed to flow has
been fixed to a solid substrate (4, 5). How-
ever, such an approach does not readily
lend itself to the examination of transient
phenomena, and the applied flow fields are
usually inhomogeneous. Here, we used in
situ measurements of molecular orientation
at the fluid-fluid interface and used homo-
geneous flow fields with well-characterized
velocity gradients.

The subject of this investigation was do-
cosanoic acid, a fatty acid that has been ex-
tensively studied with respect to its equilibri-
um phase behavior when residing as a mono-
layer at the air-water interface. Pressure-area
isotherms of Langmuir films reveal a number
of phase transitions, and the corresponding
structures have been examined by x-ray dif-
fraction (6). The latter measurements re-
vealed the existence of mesophases having
positional order but not translational order.
At the temperature used in this study (15°C),
two distinct, first-order transitions were evi-
dent in pressure-area isotherms: one at a sur-
face pressure of m = 14.5 mN m™! and the
other at m = 27.5 mN m™!. The classical
assignment of the first transition is between
two “liquid condensed” phases, denoted as the
L, and L} phases, respectively. The second
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transition separates the L; phase from the S or
“solid” phase. The L, phase has the head
groups of the molecule on a distorted, hexag-
onal lattice with the alkyl chains’ tails tilted
at an angle toward their nearest lattice neigh-
bor. As the monolayer is compressed, the tilt
angle diminishes in magnitude, and across the
transition the tilt direction switches toward
the next nearest neighbor. As the monolayer
enters the S phase, the tilt angle tends to zero
and the alkyl chains are perfectly upright, but
the head groups remain arranged on the dis-
torted, hexagonal lattice.

The tilting of the atkyl tails of docosano-
ic acid makes Brewster angle microscopy
(BAM) (7, 8) a convenient method with
which to view the polydomain structure of
this system. This optical probe uses light
polarized in the plane of incidence that is
reflected from the interface at the Brewster
angle 85, for the substrate (water, in the case
of our Langmuir films). The presence of a
thin film at the interface will cause the
Brewster condition to be violated and light
will be reflected. If the film consists of
domains characterized by unique refractive
indices, the reflected light will reveal the
film morphology. The reflected light is
viewed through an analyzing polarizer set to
an angle a relative to the plane of inci-
dence. An angle o = 60° was found to
optimize the contrast in the polydomain
structure. To calculate the reflected light
intensity, it is necessary to evaluate the
matrix of reflection coefficients Rij, @i, j) =
p or s, where p and s refer to light polarized
parallel and perpendicular to the plane of
incidence, respectively. Of interest are the
off-diagonal coefficients, R, and R, which
measure the tendency to convert p-polar-
ized light to s polarization, and vice versa.
The measured intensity is

I = Ig[cos® alR,,l* + sin’ alR, 2
+ cos asin a(R,,R% + RER,)] (1)

where I, is the incident light intensity and
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