28. Mitochondria were isolated from transformants pre-
cultured in galactose-containing selective medium
and then inoculated into selective medium contain-
ing 0.3% yeast extract. Mitochondria (3 mg of pro-
tein) were suspended in 150 pl of 50 mM Na,HPO,,,
0.9% NaCl, and 1 mM EDTA and were solubilized by
addition of 100 pl of 10% Na-cholate (pH 7.8) for 15
min on ice. After centrifugation at 100,000g for 15
min at 4°C, the supernatant was divided into 40-ul
aliquots and incubated for 30 min on ice with trypsin
(0, 5,10, 100, or 250 wg/ml). After addition of PMSF
to a final concentration of 1.2 mM and incubation for
10 min, 0.45 ml of reducing sample buffer (2X) was
added to each aliquot. A 60-pl portion of each sam-
ple was analyzed by SDS-PAGE followed by immu-

noblotting with antisera to Cox subunits. The immu-
noblot was developed by '25|-labeled protein A and
autoradiography.

29. For assessment of the assembly state of the F,F,
ATPase, mitochondria isolated from the various
transformants (400 pg) were suspended in 40 pl of
0.75 M B-aminocaproic acid, 50 mM bistris-HCI (pH
7.0), and 1 mM PMSF and were solubilized by addi-
tion of 7.5 pl of 10% lauryl maltoside. After centrifu-
gation at 100,000g for 15 min at 4°C, the superna-
tant was mixed with 2.5 pl of 5% Serva blue G and
electrophoresed on a 5 to 12% nondenaturing poly-
acrylamide gel (22). After electrophoresis, the gel
was incubated for 30 min with 50 mM bistris-HCl and
15 mM tricine-HCI (pH 7.0). The separated proteins

Requirement for Invariant Chain in
B Cell Maturation and Function

Idit Shachar and Richard A. Flavell*

Previously the role of invariant chain (li) had been described only as a chaperone that
facilitates folding and transport of major histocompatability complex class Il molecules;
here it is shown that li is required for B cell development. B cells from mice lacking li were
found to have a low response to T-independent type Il antigen and could not proliferate
after the mice were injected with antigen. Study of cell surface markers revealed a
developmental arrest that prevented immature virgin B cells from becoming mature B
cells in the periphery. This block was independent of major histocompatability complex
class Il expression and was an intrinsic feature of B cells that correlated with the amount
of li. Thus, li participates by an unknown mechanism in B cell maturation.

Major histocompatability complex (MHC)
class I molecules associate with trimers of i
during biosynthesis. Ii facilitates folding of
class IT molecules, interferes with their asso-
ciation with peptides, and is involved in
MHC class II transport (1). Furthermore,
elimination of the li gene by gene targeting
greatly diminishes the ability of antigen-pre-
senting cells (APCs) to present exogenous
protein antigen in a class II-restricted fash-
ion and impairs the maturation of CD4* T
cells in the thymus (2-4). The assembly,
transport, and function of MHC class II have
been studied in detail in mice lacking Ii
(2—4). There has not, however, been a rig-
orous examination of the functional capabil-
ity of B cells. We therefore analyzed the
function of B cells lacking [i.

To examine the function of B cells lack-
ing Ii (li7), we measured B cell response
both to the type II thymic-independent
(TI) antigen NP-Ficoll and to NP-CGG, a
thymic-dependent (TD) antigen (Fig. 1).
Both TD and TI responses were markedly
reduced in the Ii™ mice. The Ii~ mice have
reduced numbers of CD4™ T cells, which

predicts that these mice should have weak
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responses to TD antigen. However, unlike
the response in class I[I-deficient mice (5,
6), 6 days after immunization, concentra-
tions of immunoglobulin M (IgM) to NP
were low, suggesting that the primary re-
sponse of B cells was also impaired. This
observation is consistent with the defective
primary antibody response by the [i~ mice
after keyhole limpet hemocyanin (KLH)
injection (2). In response to NP-Ficoll, B
cells lacking Ii produced little IgM both 6
and 14 days after injection. Thus, the B
cells in [i™ mice were unable to respond
normally to TI antigen (Fig. 1).
Equivalent numbers of B220* B cells
were found in the periphery of the control
mice, [i~ mice, and two lines of transgenic [i
mice that express low amounts of one of the
two isoforms of [i, p31 and p41 (designated
[iP31 and [iP*!') respectively) (7, 8). To
determine the ability of these B cells to
respond to antigen in vivo after stimulation,
we immunized mice with KLH and exam-
ined draining lymph node B cells 9 days
later. In the draining lymph nodes of control
mice, the B220" B cell population had pro-
liferated and increased to 54.3 * 6.8% of the
total cells from 13.75%. In the absence of [i
or in the presence of low amounts of p31 or
p41 Ii, however, the B cell population ex-
panded to only 26.6 * 3.2% (9, 10). Because
in both [iP?"* and [iP*'° mice CD4* T cells
are present in normal amounts (7), this low
SCIENCE »
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were analyzed by immunoblotting with antisera to
the «, B, and vy subunits of F, ATPase and to mito-
chondrial hsp60. For quantitation, different amounts
of protein were loaded to ensure that measurements
were within the linear range; these different samples
were prepared from 800, 400, and 200 ng of mito-
chondrial protein.
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proliferation cannot be attributed to the
CD4* T cell deficiency. Thus, the low num-
ber of B cells found after immunization with
protein antigen could be explained by a de-
fect in the B cell response or by the rapid
death of these cells. B cells from [i~ mice
proliferated as well in vitro as did wild-type
cells in the presence of lipopolysaccharide
(LPS) (11).

B cell development occurs independently
of MHC class II expression (5, 6). To ana-
lyze B cell maturation in the absence of Ii,
we compared spleen cells from control and [i
knockout mice (Ii~) using a panel of anti-
bodies to B cell markers. Unlike B cells from
control mice, the li™ B cells expressed lower
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Fig. 1. Immunoglobulin M response to TD and Tl
antigens. li~ (circles) or wild-type littermates (trian-
gles) were challenged with the type II-Tl antigen
NPg,-Ficoll or with the TD antigen NP, ,-CGG. At
the indicated times after injection, blood was
drawn and IgM titers were quantitated by enzyme-
linked immunosorbent assay (27). The concentra-
tion of antibodies at time zero in the absence of
immunization probably represents basal concen-
trations of low-affinity IgM, although it is not clear
why this amount is higher in the li~ mice thanin the
control mice. Mean titers (micrograms per milliliter)
were as follows. Day 0: control, 1.415 = 0.96 (n =
6); li7, 10.7 = 7.9 (n = 7). Day 6: control, 50.6 +
146 (n = 6); li-, 17.2 = 7.06 (n = 10). Day 14:
control, 43.8 = 7.5(n =6);1i7,19.85 + 7.75(n =
7). The symbol that appears solid represents two
li~ mice with identical antibody concentrations.
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Fig. 3. (A) Cytofluorometric analysis of different maturation markers on
B220* cells in bone marrow. Bone marrow cells from control and li— animals
were triple-stained with anti-B220, anti-IgM, anti-CD23, anti-CD43, or anti—
I-AP. The FACS analysis shows the different markers on B220* cells (79). (B)
T cell (top row) and B cell (middle and bottom rows) profiles from
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chimeric mice after fetal liver cell transfer. B6 (B6c) (panels a, e, i, d, h, and ) or
li~ (lic™) (panels b, 1, j, ¢, g, and k) fetal liver cells were transferred to B6 (B6m)
(panels a, b, e, f, i, and j) or li~ (im~) (panels c, d, g, h, k, and |) irradiated mice
(23). Lymph node T cells (panels a to d) and B cells (panels e to |) were prepared
and stained with antibodies to B220, CD4, CD8, IgM, IgD, and CD23.
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amounts of CD23 and higher amounts of
[gM and heat-stable antigen (HSA) (Fig.
2A). Thus, peripheral B cells in the absence
of li were immature. Analysis of B cells in
the periphery of the 1iP*!'® and [i**!" trans-
genic mice revealed that the low amounts of
li that could restore T cell-positive selection
(7, 12) could not mediate full B cell matu-
ration in the periphery (13). Cell surface
markers expressed on these B cells remained
unchanged 9 days after KLH injection (Fig.
2B). Thus, B cells in the absence or presence
of low amounts of Ii remained of an imma-
ture phenotype. B cells that could proliferate
in vitro after LPS stimulation remained im-
mature as well (14).

To investigate whether the absence of
conventional MHC class I was responsible
for this B cell maturation defect, we exam-
ined maturation markers on B cells from
class [I-deficient mice. B cells from mice
lacking MHC class II (MHC™) (5, 6) and
from mice lacking the MHC class II trans-
activator (CIITA™) (15) had only slightly
lower numbers of CD23", [gM™™, and IgD"
than did cells from wild-type mice (Fig. 2C).
Therefore, the low numbers of CD23",
IgDM, and IgM™ cells in the periphery of the
Ii™ B cells were not due to less conventional
MHC class II expression or CD4" T cells,
but to the lack of li itself or perhaps a
secondary consequence of a lack of Ii. Spleen
cell lysates from the different mice were an-
alyzed for li chain, and the p31 and p4l
transgenic mice expressed low amounts of [i
(7). However, because CIITA deficiency
only partially reduced li mRNA levels, the
CIHTA™ cells expressed about 80% of the li
of cells from control mice (Fig. 2D). There-
fore, the invariant chain, rather than MHC
class II, determined the degree of maturation
of virgin B cells to mature cells.

To determine the role of li in early B cell
development, we examined bone marrow
from Ii~ and control mice cytofluorometri-
cally for the expression of surface antigens
that correlate with specific stages in B cell
ontogeny. The percentage of B220" cells
appeared to be slightly lower and the rela-
tive proportion of CD43*B220* cells
slightly higher in bone marrow of i~ mice.
As expected from their absence in the pe-
riphery, B220*CD23" cells were absent
from Ii~ bone marrow. This CD23* popu-
lation might be cells that recirculate from
the periphery to this compartment. This
places the developmental block between
the immature CD23', [gM", IgD'e, HSAM
stage and the mature CD23M, [gM™t, [gDh,
HSA™® stages (Fig. 3A).

To determine if the lack of maturation
was due to an intrinsic B cell defect or if the
bone marrow epithelial or peripheral stro-
mal cells failed to provide the signals re-
quired for B cell maturation, we isolated day
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17 fetal liver cells from either control or 1i™
embryos and transferred them into irradiat-
ed control or li~ recipients. In control chi-
meric mice in which the recipients and the
donors were Ii*, peripheral CD4* and
CD8™" T cells were reconstituted at normal
levels and a mature normal B cell popula-
tion was detected as expected (Fig. 3B,
panels a, e, and i). In contrast, the irradiat-
ed li~ recipient mice that received control
(Ii*) fetal liver cells reconstituted low
amounts of CD4™" T cells (Fig. 3B, panel d).
However, their B cells recovered a mature
phenotype (Fig. 3B, panels h and 1). Normal
mice that were reconstituted with Ii~ cells
showed a normal CD4* T cell population
(16, 17) (Fig. 3B, panel b), but their B cell
population remained immature (Fig. 3B,
panels f and j), showing the same pheno-
type as B cells of Ii~ mice (Fig. 3B, panels g
and k) (10). Thus, unlike T cells, the in-
ability of i~ B cells to mature is an intrinsic
feature. Furthermore, B cells from CD4-
deficient or interleukin-4 (IL-4)-deficient
mice matured normally. Therefore, B cell
maturation could progress in the absence of
CD4* T cells and IL-4, suggesting that
these features do not explain the B cell
defect seen in Ii~ mice (18).

Thus, we have shown that i is critical
for B cell maturation. Until now [i was
characterized as a chaperone that partici-
pates in antigen processing by allowing
MHC class II folding, maturation, and
transport. We now show that the develop-
ment from immature to mature B cells is a
controlled process that needs a signal to
occur. This step is controlled by li, and in
the absence of this chain, B cells cannot
mature or participate efficiently in the im-
mune response.
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