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A Long Pollen Record from Lowland Amazonia: 
Forest and Cooling in Glacial Times 

P. A. Colinvaux,* P. E. De Oliveira,? J. E. Moreno, M. C. Miller, 
M. B. Bush* 

A continuous pollen history of more than 40,000 years was obtained from a lake in the 
lowland Amazon rain forest. Pollen spectra demonstrate that tropical rain forest occupied 
the region continuously and that savannas or grasslands were not present during the last 
glacial maximum. The data suggest that the western Amazon forest was not fragmented 
into refugia in glacial times and that the lowlands were not a source of dust. Glacial age 
forests were comparable to modern forests but also included species now restricted to 
higher elevations by temperature, suggesting a cooling of the order of 5" to 6°C. 

T h e  Amazon lowlands in glacial times are 
widely thought to have been much drier 
than at present, even according to the "ref- 
uge hypothesis," so dry as to have prevented 
forest from occupying much of the basin 
(1 ), although this view has its critics (2-6). 
Many paleoecological data suggest cooling 
as a major climatic forcing in the Neotro- 
pics (7-10). We have tested the ice-age 
aridity and cooling hypotheses, using proxy 
data from Amazonian lake sediments (1 1 ). 

Lake Pata lies below. the 300-m contour 
on  the Hill of the Six Lakes, a low inselberg 
of ancient plutonic rocks at 0°16'N, 
66"411W in the Amazon lowland of north- 
western Brazil (12) (Fig. 1). The lowland 
vegetation of the region is dense tropical rain 
forest (DTRF) in a hot, humid climate (13). 

All the lakes on the inselberg occupy 
small closed, steep-sided basins with flat or 
shelving bottoms under 7 to 15 m of water. 
The water level of one lake fell by about a 
meter in the 2 weeks of our visit, suggesting 
that the basins might not be completely 

sealed. The water is soft and acidic. which 
shows that these are not carbonate solution 
basins. A ~lausible hv~othesis is that these , s 
are pseudo-karst lakes occupying basins 
formed by the solution of silica from an- 
cient quarzitic rocks, perhaps dating from 
pre-Pleistocene times (1 2). 

Lake Pata is about 300 m long and 7 m 
deep, and it occupies a large part of its for- 
ested catchment. We  ist ton-cored the lake 
at its deepest point, reaching basement grav- 
el under 7 m of lacustrine sediment. Seven 
accelerator mass spectrometer (AMS) radio- 
carbon dates, together with five P-decay 
dates, demonstrate that sedimentation has 
been continuous, roughly constant, and ex- 
tremely slow, with an age of 30,000 years 
being reached in the first meter (14) (Table 
1). The gross stratigraphy is simple: a sur- 
face unit (A) of soft blackish gyttja about 
60 cm thick that grades over several centi- 
meters into a yellower, firmer, and more 
granular unit (B) 20 cm thick, which in 
turn grades into a unit (C) of bluish black 
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gyttja 5 m thick (15).  All three stratigraph- 
ic units are represented in  the  last 42,000 
years, spanned by the top 1.6 m of deposit 
(left of Fig. 2).  

T h e  obvious causal hypothesis for the  
stratigraphy rests o n  fluctuations of the  
lake level, with the  yellowish unit  B rep- 
resenting lowered lake level that  permit- 
ted oxidation of surface mud. Four A M S  
dates define the  boundaries of unit  B as 
14,230 -t 60 and 30,830 & 220 years 
before present (B.P.),  respectively (Table  
1 and Fig. 2) .  These dates confirm that  
unit  B spans the  last glacial maximum 
(LGM) but are not  exactly coincident 
with S P E C M A P  stage 2 (12,000 and 
24,000 years) (1  6 ) .  Possibly the  climate of 
the  central Alnazo~l  corresponds more 
closely with the  stage 3.1 boundary 
(SPECMAP 28,000 years) and the  onset 
of late glacial warming a t  14,000 years. 

Figure 2 is a pollell percentage diagram 
for the top 1.6 m of the Lake Pata sediments, 
based 011 cou~l ts  of about 500 grains per level 
(17). Between 70 and 90% of all spectra are 
of tree pollell, the list of identified genera 
(Table 2) being strongly suggestive of the  
DTRF certai~lly represented by the  upper 

pollen spectra of the  Holoce~le.  Grass (Gra- 
mineae) pollen is present in only trace 
amounts, and the sum total of herbs is low to 
trivial. conclusive evidence that savannas or 
other grasslands were never present o n  or 
near the inselberg at any of the times inves- 
tigated (18).  

T h e  pollen data,  therefore, unequivo- 
cally demonstrate tha t  closed tropical rain 
forest occupied the  inselberg and the  sur- 
roundi~lg  lowlands throughout the  time 
spanned by t h e  s e c t i o ~ ~ ,  that  is, from at  
least isotope stage 3 to  the  present (19) .  I t  
is noteworthy tha t  forest was mailltailled 
throughout isotope stage 2 and t h e  LGM,  
despite t h e  evidence from unit  B that  the  
lake level was lower then.  Apparently t h e  
change in  water balance, through a direct 
reduction of p rec ip i t a t io~~ ,  l e~ lg then i~ lg  of 
dry season, or  lowering of water table, was 
not  sufficient to d i s r u ~ t  the  forest. T h e  
moisture regime remained within the  tol- 
erance of most rain forest taxa. 

Rather than aridity, the pollell data indi- 
cate cooling in both isotope stages 2 and 3, 
the strongest signal being given by the tropi- 
cal gymnosperm Podocarpus (20). Podocarpus 
is present in significant percentages in all 

sediments of isotope stages 2 and 3 ,  reaching 
10% at the LGM, but is reduced to trace 
amounts in the Holocene spectra. Associated 
with Podocarpus are the cool-adapted taxa 
Humina and Ericaceae, as well as maxima of 
Weinmannia. Ilex. Melastomataceae. Hedvos- , , , 2 

mum, and Rapanea (expanded scales at the left 
of Fig. 2).  Maxima of these taxa are super- 
imposed o n  the  pollen spectra of the  rain 
forest: thus, the  data do  not  recluire a re- 
placement of vegetation types but rather a 
former enrichment of the  forest with sDe- 
cies populations now confined or promi- 
nent  a t  higher elevations. 

These pollen spectra of glacial times may 
be compared with glacial age pollen spectra 
in the  western Amazo~l  of Ecuador, where 
Podocarpus, Weinmannia, and even Alnus 
and Drvmis were incor~orated into Amazo- 
nian forests, although their modern altitu- 
dinal limits are Andean ( > l o 0 0  m hieher) - ,  

(8). Comparable descenis of temperature- 
sensitive taxa into lowland forests have 
been recorded from Panama (10).  T h e  
Podocarpus and associated taxa thus invite 
the hypothesis that they represent entry 
into lowland rain forests of significant pop- 
ulations of more cold-adapted plants. 

/ Arboreal / Herb,~ / - - - - S u m s 7  

Fig. 2. Pollen percentage diagram of the top 1.6 m of sediments from Lake Pata. Data.represent the percentages of total pollen. The diagonal shading of the 
six curves at the far left denotes that the data were ampl~f~ed five times for taxa carrying the s~gnal for glacial cooling. CONlSS cluster analys~s and pollen 
plotting by TlLlA (23). 
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REPORTS 

Applying moist air lapse rates to a Podo-

carpus descent of 800 to 1000 m from Pico 

da Neblina (20) yields temperature depres­

sion on the order of 5° to 6°C. This is of the 

same order as the temperature depression 

Table 1. Radiocarbon dates from Lake Pata sed­
iments. The topmost data are conventional (p-
decay) dates on the first two sections of a 7-m 
core. Data at the bottom are AMS dates on a 
parallel 1 -m section that overlaps the first two core 
sections to include sediment at the section 
change lost during recovery. Ages are given as 
uncorrected years B.P. 

Sample 

(3-63417 
(3-75109 
0-75110 
(3-68529 
(3-68530 

(3-91489 
(3-90306 
(3-90307 
(3-91490 
(3-88941 
(3-89715 
(3-88942 

Age 
(years B.P.) 

First core ((3 decay) 
5,800 ± 70 

17,840 ± 300 
31,390 ± 540 
38,860 ± 920 
42,010 ± 1240 

Parallel core (AMS) 
14,230 ± 60 
15,560 ± 60 
18,020 ± 70 
30,830 ± 220 
32,010 ± 630 
34,650 ± 420 
37,830 ± 1300 

Depth 
(cm) 

50-55 
72-77 

105-110 
115-120 
155-160 

62.5 
67.5 
73.5 
84.5 
96.5 

106.5 
113.5 

Table 2. Arboreal genera identified in Lake Pata 
sediments. This list included genera with species 
adapted to different climatic regimes, as well as 
those more restricted to a tropical rain forest. 
Guarea and Cedrela (Meliaceae), Clusia (Gutti-
ferae), and Didymopanax (Araliaceae) are strongly 
suggestive of a tropical rain forest, as are a num­
ber of grains we assigned to Bombacaceae with­
out being able to classify them to genus. Caryocar 
is a genus mostly of forest trees (a large specimen 
overshadowed our camp in the forest), although 
one species is also prominent in cerrado vegeta­
tion, and other genera such as Cordia, Protium, 
Byrsonima, and Pera have many drought-tolerant 
species as well as moist forest species. The com­
plete list, however, is diagnostic of a closed trop­
ical forest. 

Alchornea-Aparisthmium 
Apeiba 
Byrsonima 
Caryocar 
Cassia 
Cecropia 
Cedrela 
Chrysophyllum 
Clusia 
Cordia 
Cryosophila 
Didymopanax 
Diospyros 
Eschweilera 
Guarea 
Hedyosmum 
Humiria 
Ilex 
Iriartea 
Luehea 

Mauritia 
Mabea 
Machaerium-Dalbergia 
Macrolobium 
Matayba 
Pera 
Pouteria 
Protium 
Psychotria 
Rapanea 
Roupala 
Sapium 
Sebastiana 
Spondias 
Tabebuia 
Tapirira 
Trattinickia 
Trichilia 
Virola 
Vochysia 

calculated for eastern Brazil, Amazonian 

Ecuador, lowland Panama, Guatemala, and 

the Barbados sea surface (7-10). At Lake 

Pata, temperature change probably is also 

responsible for the history of the palm Mau­

ritia, which became prominent only with 

Holocene warming (21). 

This long, continuous pollen record 

from the Amazon lowlands represents data 

from but a single site in an immense eco­

system (11). Nevertheless, it suggests that 

current views about the vegetation and 

climate of the ice age Amazon should be 

reconsidered. Although precipitation was 

reduced in the colder glacial times, the 

reduction was not sufficient to displace or 

fragment the rain forest. Savannas proba­

bly did not expand into what are now 

forested lowlands, and alternatives to the 

refuge hypothesis are required to explain 

species endemisms (3, 4). Arid regions as 

sources of ice age dust should be sought 

outside the Amazon basin. We suggest 

that the primary environmental forcing of 

the Amazon system in glacial times was a 

drop in temperature, a direct consequence 

of which was an increase in diversity as 

rain forest communities accommodated 

more cool-adapted taxa as well as their 

present array (7). 
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of wind pollination mechanisms would result In mini- 
mal pollen deposition. Amazon lake mud, however, 
turns out to have high pollen concentrations, consis- 
tent with the h~gh pollen nflux (20,000 grains cm-' 
year-') measured in our airborne-pollen traps from 
Ecuadorian Amazonia, from near Manaus, and from 
the coastal rain forest of eastern Brazil [M. B. Bush, J. 
Veg. Sci. 3, 275 (1 99211. The Amazon pollen assem- 
bl~es are extremely diverse by temperate standards 
(we recognized 169 taxa In the Lake Pata analyses, 
based on our reference collection of >5000 neotropi- 
cal species in >I500 genera. This high influx of di- 
verse pollen taxa certainly holds a remarkably detailed 
history of Amazonian forest associations, the full po- 
tential of which will be realized only when more aut- 
ecological information is available. 

18. Forest s~gnatures are also inherent ~n the percent- 
ages of the more copious pollen-producing families 
in the forest such as Moraceae, Urticaceae, Meas- 
tomatacew, and Myrtaceae. If these percentages, 
together hith the percentages of wind-blown pollen 
of grasses, are used, it is poss~ble statistically to 
separate the principal plant associations of the ow- 
land neotropics, providing an independent identifica- 
t~on of DTRF in the Lake Pata pollen spectra [M. B. 
Bush, Holocene I ,  162 (1 991)l. 

19. Pollen counts at coarse intervals reveal smilar forest 
spectra throughout the bottom 5 m of the section 
also, suggesting that DTRF was the local vegetation 
throughout the complete glacial cycle. 

20. Podocarpus pollen has never been recorded ~n more 
than trace amounts in suriace samples or Holocene 
sections from lowland forests of the Neotropics (22). 
The few grams of Podocarpus in surface and Holo- 
cene records can best be explained as the result of 
wind transport over long distances from Podocarpus 
stands at high eledations in the Andes and elsewhere 
or from rare Podocarpus trees in gallery forests [M. L. 
Sagado-Labouriau, Proceedings of the international 
Conference on Aerobioiogy, Berlin (1978), p. 89. Our 

3 years of pollen trap data (100 traps) in Ecuadorian 
Amazonia include almost no Podocarpus. Traps in a 
I -ha plot of coastal rain forest of southeastern Brazil 
(1 year of data, H. Behling, unpublished data) yielded 
only 0.8% Podocarpus despite the fact that three 
Podocarpus trees grow within the plot. Thus, Podo- 
carpus populations much denser than those now 
found in Neotropical lowlands would be required to 
account for high Podocarpus pollen percentages All 
reports of significant Podocarpus populat~ons in 
northwestern Brazil are from Pico da Neblina, a 
mountain rising to 301 4 m, 90 km northeast of the Hill 
of the SIX Lakes Principal herbarium holdings from 
the region are at the Field Museum and the New York 
Botanic Garden, both of which we searched for 
Podocarpus, finding minimum recorded elevations as 
follows: P. buchoizii, 21 00 m; P. magnifolius, 1725 m, 
P. roraimae. 1200 m; P. steyennarkii, 1200 m; and P. 
tepuiensis, 11 00 m. If the Lake Pata Podocarpus pol- 
len represents descents of these populat~ons, minimal 
descents were 800 m to the summit of the Hill of the 
Six Lakes and 1000 m to the surrounding lowlands. 
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Achievement of Thermal Stability by Varying 
Metabolic Heat Production in Flying Honeybees 

Jon F. Harrison,* Jennifer H. Fewell, Stephen P. Roberts, 
H. Glenn Hall 

Thermoregulation of the thorax allows endothermic insects to achieve power outputs 
during flight that are among the highest in the animal kingdom. Flying endothermic 
insects, including the honeybee Apis mellifera, are believed to thermoregulate almost 
exclusively by varying heat loss. Here it is shown that a rise in air temperature from 20" 
to 40°C causes large decreases in metabolic heat production and wing-beat frequency 
in honeybees during hovering, agitated, or loaded flight. Thus, variation in heat pro- 
duction may be the primary mechanism for achieving thermal stability in flying honey- 
bees, and this mechanism may occur commonly in endothermic insects. 

Like  Inany other large endothermic in- 
sects, honeybees regulate thoracic tempera- 
tures relatively closely over a range of air 
temperatures (1-4). Thoracic thermoregu- 
lation in flying honeybees is thought to 
occur primarily through varying evapora- 
tive heat loss, which is made possible by the 
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extrusion of nectar carried during foraging 
(1-5). Thermoregulation during flight by 
varying heat production has been consid- 
ered implausible for endothermic insects 
because metabolic rates increase with rising 
thoracic temperature during warm-up (1 ) 
and because the power output required dur- 
ing flight has been considered to be deter- 
mined bv aerodvnamic rather than thermo- 

Zoology, Arizona State Univers~ty, Tempe, 'M 85287- regulato;y (1 ,  2 ,  6 ) .  
1501, USA. 
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Building 970, Hull Road 0740, Univers~ty of Florida, effect on the metabolic rate of honeybees in 
Ganesvile, FL 3261 1-0620. USA high-intensity, agitated flight during a study 
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(7). In these assays, bees were agitated con- 
tinuously during the lneasurements to elicit 
high-intensity flight. Both flight metabolic 
rate and wing-beat frequency were nega- 
tively correlated with air temperature (8). 
Flight metabolic rates were 25% lower at 
30°C than at 20°C. with air temverature 
accounting for 47% of the measured varia- 
tion in metabolic rate and 12% of the vari- 
ation in wing-beat frequency over this small 
thermal range, despite the genetic diversity 
of the bees (Fig. 1). For these analyses, data 
from African. Euro~ean, and hvbrid colo- 
nies were pooled, because genotype did not 
significantly affect the slope of the regres- 
sion relations between air temperature and 
metabolic rate or wing-beat frequency. 

We conducted an experimental test of 
these correlative data by flying European 
honeybees at a range of air temperatures 
within a temperature-controlled room at 
the a~iarv  of the Universitv of California. 
~avis :  outgoing foragers Were collected 
from two colonies, and flight metabolic - 
rates, wing-beat frequencies, and thoracic 
and abdominal temperatures were measured 
(8-1 0). Honeybee thoracic temperature 
varied much less than ambient temperature 
(Fig. 2) .  Abdominal temperatures closely 
tracked air temperatures (Fig. 2 ) ,  supporting 
vrevious findines that variable heat transfer " 
between thorax and abdomen is not an 
important mechanism of thermoregulation 
in flying honeybees ( 1 ,  3-5). Metabolic 
rates of flying agitated bees decreased by 
50% as air temperature rose from 20" to 
40°C (Fig. 3A). Metabolic rates were unaf- 
fected by nectar loads greater than 50% of 
body mass at either 21" or 38°C ( 1  1 )  (Table 
I ) ,  suggesting that agitated honeybees fly at 
near-maximal performance (7) and that 
loaded bees also thermoregulate by varying 
metabolic heat production. 

Variation in metabolic rates with temner- 
ature for the agitated bees, which fly rapidly 
and erratically about the respirolnetry cham- 
ber, might reflect varying degrees of agita- 
tion and intensity of flight performance. 
Hovering flight is considered to be a well- 
defined behavior, in which metabolic rate is 
determined solely by the aerodynamic power 
requirements for hovering ( 1 ,  2 ,  5). We 
tested the effect of air temperature on the 
metabolic rate of bees in undisturbed hover- 
ing flight, with the expectation that the 
metabolic rate during hovering would be - u 

independent of air temperature (12).  How- 
ever, the metabolic rates of honeybees in 
stationary, undisturbed hovering flight de- 
creased by 40% as air temperature rose from 
20" to 40°C (Fig. 3A). Heinrich measured 
flight metabolic rates for hovering honey- 
bees that were 20 to 40% below ours and 
independent of air temperature (4). Howev- 
er, by using a flow-through respirolnetry sys- 
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