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Evoked activity in the mammalian cortex and the resulting behavioral responses exhibit 
a large variability to repeated presentations of the same stimulus. This study examined 
whether the variability can be attributed to ongoing activity. Ongoing and evoked spa- 
tiotemporal activity patterns in the cat visual cortex were measured with real-time optical 
imaging; local field potentials and discharges of single neurons were recorded simul- 
taneously, by electrophysiological techniques. The evoked activity appeared determin- 
istic, and the variability resulted from the dynamics of ongoing activity, presumably 
reflecting the instantaneous state of cortical networks. In spite of the large variability, 
evoked responses in single trials could be predicted by linear summation of the deter- 
ministic response and the preceding ongoing activity. Ongoing activity must play an 
important role in cortical function and cannot be ignored in exploration of cognitive 
processes. 

W h e n  a stimulus is presented repeatedly, 
the variability of the evoked cortical re- 
sponses is often as large as the response 
itself, both in anesthetized ( I )  and in 
awake, behaving animals (2). The standard 
approach has been to adopt a "signal-plus- 
noise" model, assuming that an individual - 
evoked response is composed of a reproduc- 
ible signal added to uncorrelated noise. The 
signal is then recovered experimentally 
from the noise by averaging over repeated 
trials (3). This approach tacitly assumes 
that variability reflects "noise," which is a 
nuisance for cortical processing and could 
be overcome by the brain by appropriate 
averaging over populations of neurons (4). 
Numerous articles deal with the question of 
what the source of variability in the brain is 
(5, 6). This issue of the reliability of cortical 
responses must be resolved in order to de- 
termine whether the neural code for infor- 
mation transfer in the brain requires the 
averaged activity of many neurons (7). 

Ongoing cortical activity is far from be- 
ing just noise (8). In fact, the spontaneous 
activity of a single neuron is not an inde- 
pendent process but is time-locked to the 
firing or to the synaptic inputs from numer- 
ous other neurons, all activated in a coher- 
ent fashion, even without sensory input. 
Often the coherent ongoing activity is as 
large as evoked activity. Therefore, ongoing 
activity must have a major influence on 
sensory processing. We present evidence for 
the hypothesis that cortical evoked activity 
comprises a reproducible stimulus response 
and a dynamically changing ongoing activ- 
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ity, presumably reflecting varying brain 
states (9). 

We tested the above hypothesis by ana- 
lyzing the spatiotemporal dynamics in sin- 
gle-trial responses to visual stimulation 
(moving gratings). Experiments were car- 
ried out on six anesthetized, muscle-relaxed 
adult cats as described elsewhere (8, 10). 
Activity was measured in the visual cortex 
(areas 17 and 18), combining real-time op- 
tical imaging and electrophysiological re- 
cordings. A 2-mm-square area of primary 
visual cortex, stained with the voltage-sen- 
sitive dye RH795, was imaged onto a 12 x 
12 array of photodiodes. Simultaneously, 
spike discharges of two isolated neurons and 
the local field potential (LFP) were record- 
ed from a microelectrode inserted into the 
exposed area. Optical and electrical signals 
were continuously sampled every 3.5 ms for 
periods of 70 s. 

Real-time optical imaging with the use of 
voltage-sensitive dyes measures, at millisec- 
ond time resolution, the membrane poten- 
tial changes of populations of neuron pro- 
cesses (11). It emphasizes synaptic input, 
and hence, the signal is similar to the LFP 
(8, 12). We analyzed the dynamics of the 
nonaveraged activities in single trials and 
their organization in space and time (13, 
14). This analvsis enabled us to assess the 
exient to which individual cortical response 
patterns are influenced by the instantaneous 
network state. Optically recorded images to- 
gether with traces of the simultaneously re- 
corded LFP and spike trains are shown in 
Fig. 1A for two responses to a repeated 
visual stimulus. The large variability re- 
vealed in the optically imaged responses re- 
sembles the well-known variabilitv in the 
LFP and single-neuron recordings. The fact 
that the response variability of synaptic pop- 

I 
Fig. 1. Evoked activity in response to repetiiive 
stimulation exhibits large variability. (A) Two indi- 
vidual responses (a and b) to a repeated visual 
stimulus [bottom trace in (B)]: The images (la,b) 
show the activity in a 2 mm by 2 mm area of 
cortex, taken at different times from response on- 
set. Activation above the mean level is coded in 
red, suppression in blue, as indicated by the color 
scale (right); full scale corresponds to a fractional 
change of -5 x The small square in the 
first image marks the site, above the microelec- 
trode, from which the optical traces (2a,b) were 
taken. Note the large variability in the evoked re- 
sponse, also reflected in the LFP (3a,b) and single- 
neuron spike trains (4a,b), both recorded simulta- 
neously with the optical signals. The absence of 
slow components in the LFP is due to high-pass 
filtering above 3 Hz. (8) Average evoked re- 
sponse: The optical images and signals, LFP, and 
single-unit activity were averaged, triggered on 
the onset of 34 visual stimuli (drifting full-field grat- 
ing) in the preferred orientation of the recorded 
unit. 

ulation activity, measured optically and in 
LFP, is at least as large as the response itself 
argues against the assumption that averaging 
over local neuron populations would elimi- 
nate response variability (4). Averaging 
over trials (Fig. 1B) does remove this vari- 
ability and extracts the reproducible re- 
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Fig. 2. Cortical evoked 
activity is related to the 
initial state. (A) Scatter 
plot of optically rnea- 
sured evoked activity at 
a single cortical site 42 
ms after response on- 
set in 34 successive 
single trials versus the 
initial state at that site. 
Both axes have the 
same arbitrary units. 
The straight line depicts 
the result of linear re- 
gression (correlation 
coefficient R = 0.9). (8) 
Correlation coefficients 
[as in (A)] for all sites in 
the imaged cortical 
area. The arrow marks 
the site, selected in (A). 
The statistical signifi- 
cance of correlation is 
indicated by color. (C) 
Correlation between the 
evoked LFP 28 rns after 
response onset and the 
initial state. (D) Correla- 
tion between the 
evoked spike rate, rnea- 
sured over an interval of 
35 rns centered around 
28 rns after response 
onset, and the initial 
state. The correlations 

Fig. 3. Predicting the cortical evoked response. (A) A 
single-trial response to a stimulus was predicted by 

in (C) and (D) are between a single site (microelectrode recording) and all optically measured sites. summing the reproducible response and the ongo- 
ing activity, approximated by the initial state. (6) 
Comparison of the predicted and measured re- 
sponses. (Top trace) Averaged evoked response (34 

sponse. We define time 0 as the moment to be considerably smaller because they trials), measured from a single optical channel above 
just before the onset of the average response. reflect different aspects of cortical activity the microelectrode site (small square in top-left 
The optically measured activity pattem at and different resolutions in space and frame). (First row) Averaged evoked activity Pattern 
time 0 in an individual trial is here referred time. The optical signal reflects localized (after Of frame O)- shown at live different 

to as the initial state of that trial. changes in membrane potential, emphasiz- fim after response onset, indicated by the arrows. 
All other rows show single-trial responses. (Second Searching for systematic rules underly- ing synaptic input restricted to the upper 
row) state, approximating angoing activity dur- 

ing the response variability, we found that cortical layers. O n  the other hand, the ing the response, (Third row) Predicted response, 
the evoked activity is highly correlated to LFP reflects the extracellular currents near obtained by addingtheframes inthefirst and second 
the initial state: The evoked activity is the electrode tip, with an ambiguous rela- rows. ( ~ o ~ r t h  row) ~ e a s ~ r e d  response, 
low when the initial state was low, where- tion between the amplitude and polarity 
as it is hieh when the initial state was of the LFP waves and the brain cell activ- ., 
high. The relation between the two is 
approximately linear (Fig. 2A), as ex- 
pressed by the high correlation coefficient 
(R = 0.9, P < lo-'*, n = 34 trials). Such 
high correlation was found for most of the 
recorded area (Fig. 2B) (P < 0.001 in all 
35 recordine sessions from six cats. each " 
session containing 34 trials). The correla- 
tion was not restricted to the o ~ t i c a l  re- 
cordings, but held for the electrophysio- 
logical recordings as well. Indeed, the ini- 
tial state was significantly correlated over 
a large area with the evoked LFP (Fig. 2C) 
[P < 0.01 in 89% (31135) of the sessions] 
and, albeit to a lower extent, with the 
single-neuron spike rate (Fig. 2D) [P < 
0.01 in 69% (24135) of the sessions]. The 
correlation across the different tvDes of , L 

electrophysiological recordings is expected 

ity in the vicinity of the microelectrode 
(15). In the simplest approximation, the 
LFP is the derivative of the optical signal. 
However, both signals are continuous 
waves that reflect the activity of thou- 
sands of neurons and are correlated to the 
state of the animal (16). The action po- 
tentials (spikes), with a time resolution of 
milliseconds, reflect the output of single 
neurons rather than of a population. In 
view of these considerations, our findings 
exhibit a remarkable consistency across 
cortical activities at greatly different spa- 
tial resolutions, measured by very different 
recording techniques. 

The high correlations observed in sin- 
gle trials are consistent with the assump- 
tion that the stimulus-evoked activity 
contains a reproducible response compo- 

nent and that the changes in the patterns 
of evoked activitv from trial to trial are 
caused by the fluctuating ongoing activity. 
This view is ex~ressed in a sim~lified mod- 
el (Fig. 3A) which an individual re- 
sponse is the sum of two components: the 
reproducible response and the ongoing ac- 
tivity. Thus, the effect of a stimulus might 
be likened to the additional ripples caused 
by tossing a stone into a wavy sea. 

A consequence of this simplified model 
is that we should be able to predict the 
response pattern in a single trial by taking 
into account the initial state of that trial. 
This prediction should hold for as long as 
the ongoing activity pattem (which pre- 
sumably continues to change during the 
evoked response) is still similar to the ini- 
tial state. Given that most of the energy in 
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the LFP is restricted to frequencies below 
about 20 Hz, we expect our prediction to 
perform well for up to 50 ms after response 
onset. We calculated the predicted response 
by adding the initial state, a single frame 
(Fig. 3B, second row), to the averaged re- 
sponse, a series of frames (Fig. 3B, first row). 
The result of such prediction (Fig. 3B, third 
row) corresponds well to what we actually 
measured (Fig. 3B, fourth row). We applied 
this procedure to all of the data (1 190 trials 
from six cats) and compared the predicted 
responses, trial by trial, with the measured 
responses. 

Particularly good examples of the predic- 
tion are shown in Fig. 4A for three consec- 
utive trials in a recording session, examin- 
ing the images obtained 28 ms after re- 
sponse onset. Note that the predictions for 
different trials vary only in their initial 
states. The variability among these initial 
states (first column) is so large and the 
patterns are so heterogeneous that the 
evoked activity in single trials (second col- 
umn) looks very different each time. Yet, in 
all of these cases we obtained excellent 
predictions of the evoked activity pattern 
(third column), in spite of the large vari- 
ability. Such good predictions were ob- 
tained for many of our trials, for periods of 
tens of milliseconds after response onset. 
Subtracting the initial state (first column) 
from the measured resDonse (second col- 
umn) leaves a net pattern ([M - I], last 
column): a single-trial estimate of the re- 
producible response to this particular stim- 
ulus. These net patterns are very similar, 
whereas the measured patterns (second 
column) are variable, suggesting that "re- 
moval" of the ongoing activity from the 
measured response does markedly reduce 
the response variability. We do not know 
if the lack of a perfect match among the 

net patterns should be attributed solely to 
the change of ongoing activity from the 
initial state or whether, in addition, it 
reflects deviations from the simplified, lin- 
ear model. 

To  quantify the performance of the pre- 
diction, we measured the correlation coef- 
ficient between predicted and measured re- 
sponse patterns as a function of time from 
response onset for all the data (Fig. 4B). 
The long-lasting high correlation shows 
that a deterministic response added to a 
varying initial state does indeed approxi- 
mate the varying individual response. Not 
surprisingly, the quality of the prediction 
declines with time from response onset. 
This decline occurs because the prediction 
procedure (Fig. 3B) reduces the ongoing 
activity dynamics to a single snapshot (the 
initial state). Specifically, it does not take 
into account that the ongoing activity con- 
tinues to change while the evoked response 
unfolds. Evidently, we cannot directly mea- 
sure the ongoing pattern during that time. 
We could estimate the expected time 
course of this change, however, by deter- 
mining the autocorrelation of the optically 
measured activity patterns, triggered on the 
response onset (Fig. 4C). The left-hand part 
of the graph describes the statistical behav- 
ior of the ongoing activity up to the mo- 
ment of response onset, and the right-hand 
Dart shows the statistical behavior of the 
activity after the initiation of the response. 
Clearly, the background ongoing activity 
has a very similar time course to the evoked 
activity (the evoked activity lasted for 
-100 ms). In fact, the remarkable similarity 
between the two halves of the graph indi- 
cates that, on average, the ongoing dynam- 
ics are not affected by the response. The 
excellent resemblance between the curve in 
Fig. 4B and the left-hand part of Fig. 4C 

A ln~t~al  Measured Pred~cted [M - 11 B I - '  

state response response 
C 

shows that the gradual decline in the qual- 
ity of prediction can indeed be attributed to 
the progressing deviation of the ongoing 
activity from the initial state (the curve in 
Fig. 4B and the right-hand part of Fig. 4C 
are identical mathematically). 

The brain often does not respond in the 
same way to a repeated stimulus, even 
though cortical neurons are able to respond 
with remarkable temporal accuracy (5, 17). 
Because of this variabilitv. found also in , , 
awake, behaving monkeys (2), it has been 
assumed that the signal is contaminated by 
the brain's "noise." Our findings provide 
experimental evidence to support the hy- 
pothesis that the processing of sensory input 
in the visual cortex involves the combina- 
tion of a deterministic response and ongo- 
ing network dynamics. The relation be- 
tween ongoing activity and evoked re- 
sponse in first approximation is linear (18). 
,The combination of these components ac- 
counts for the large response variability in 
individual trials. It is well established that 
the ongoing activity measured by the elec- 
troencephalogram (EEG) is correlated to 
behavioral state and cognitive processes 
(1 6). In previous work (8, 19), we charac- 
terized the ongoing activity measured opti- 
cally, showing that it is strongly correlated 
with the local EEG and is composed of 
highly structured, ever-changing patterns of 
coherent activitv. Taken toeether. these - 
findings indicate that old notions of what is 
"noise" in brain activity may have to be 
revised. Because the ongoing activity is of- 
ten very large, we would expect it to play a 
major role in cortical function. It may pro- 
vide the neuronal substrate for the depen- 
dence of sensory information processing on 
contcxt and on behavioral and conscious 
states. Indeed, the ongoing activity also af- 
fects the behavior of the awake macaque 
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Fig. 4. Quality of prediction of the response. (A) Three consecutive single- 
trial responses (1 though 3) to the same visual stimulus, showing the initial 
state, the measured response 28 ms later, and the predicted response at 
that time. Subtracting the initial state from the measured response yielded 
the net pattern [M - i. (B) Quality of prediction, assessed by the correlation 
coefficient between predicted and optically measured activity patterns as a 
function of time from response onset.   he curve shows themean correla- 
tion; the error bars denote the standard error of the mean (n = 35 recording 
sessions). (C) Autocorrelation of optically measured activity patterns, trig- 

gered on the response onset (time 0). The right-hand curve shows the 
correlation coefficient between the ongoing activity at time 0 (just before 
response onset) and the evoked activity. The left-hand curve shows the 
correlation coefficient between the same ongoing activity at time 0 and the 
ongoing activity before stimulus onset. After calculating the correlation 
coefficient for each pixel in the matrix at a certain delay, we simply summed 
all the pixels (because we did not see any consistent temporal differences 
between the different pixels). The insets in (B) and (C) show the correlations 
over prolonged time. 
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monkey: The reaction time in an arm-
reaching paradigm could be predicted from 
the ongoing activity preceding the arm 
movement (20). 
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Th e neural codes that define discrete units 
of episodic behavior and organize these 
units into temporal sequences are not well 
established. Vocalizations constitute a 
group of behaviors for which correct tem­
poral sequencing of discrete, often stereo­
typed events is fundamental to proper exe­
cution (I). Participation of midbrain struc­
tures in the generation of simple calls is well 
known in both mammals and birds (2). Less 
is known about the contribution of fore-
brain structures, particularly in the produc­
tion of more complex vocalizations such as 
human speech and bird songs. Here, we 
characterize singing-related neuronal activ­
ity in the nuclei HVc and robustus archis-
triatalis (RA) of the zebra finch (Taeniopy-
gia guttata). We present evidence for the 
hierarchical organization of neural codes 
that corresponds to the hierarchical organi­
zation of the singing behavior. 

Zebra finch songs are hierarchically or­
ganized vocalizations formed by discrete 
acoustic elements (syllables) separated by 
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intervals of silence (3). Song syllables can 
be classified into distinct classes (types) on 
the basis of acoustic features. Each syllable, 
in turn, can be further divided into acous­
tically distinct notes. The typical zebra 
finch song begins with a variable number of 
identical, simple introductory syllables 
comprising one or two notes, followed by a 
fixed sequence (motif) of multinote sylla­
bles. The motifs are repeated in longer ver­
sions of songs and are often separated by 
introductory syllables or other simple "con­
necting" syllables. 

We developed techniques to record sin­
gle-unit and multiple-unit neuronal activity 
in the HVc and RA of singing adult male 
zebra finches (4). Multiple sites were re­
corded in each nucleus in several birds who 
were good singers, resulting in a large data­
base of vocalizations and associated neuro­
nal activities [94 ± 92 (mean ± SD) songs 
per bird, n = 13 birds]. The onset and offset 
time and the identity of each syllable and 
note were established manually or by an 
automatic technique (5) whose output was 
verified manually. This procedure was es­
sential for veridical analysis because the 
exact timing of the sequence of song ele­
ments varied from song to song. Additional 
long records (300 s) of ongoing activity 

Temporal Hierarchical Control 
of Singing in Birds 
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Songs of birds comprise hierarchical sets of vocal gestures. In zebra finches, songs 
include notes and syllables (groups of notes) delivered in fixed sequences. During 
singing, premotor neurons in the forebrain nucleus HVc exhibited reliable changes in 
activity rates whose patterns were uniquely associated with syllable identity. Neurons in 
the forebrain nucleus robustus archistriatalis, which receives input from the HVc, ex­
hibited precisely timed and structured bursts of activity that were uniquely associated 
with note identity. Hence, units of vocal behavior are represented hierarchically in the 
avian forebrain. The representation of temporal sequences at each level of the hierarchy 
may be established by means of a decoding process involving interactions of higher level 
input with intrinsic local circuitry. Behavior is apparently represented by precise temporal 
patterning of spike trains at lower levels of the hierarchy. 
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