
This activation was blunted to 12% of cells 
in CD40L-I- mice (Fig. 3C); activation of 
CD40 with antibody in the CD40L-I- mice 
increased B7.2 expression to 32% (Fig. 3D). 

We  studied the functional importance of 
B7-mediated costimulation of T cells to 
vector in wild-type C57BL/6 mice by in- 
jecting blocking antibodies to B7.1 and 
B7.2 at the time of vector administration. T 
cells from these animals failed to secrete 
TH1- and TH2-specific cytokines in re- 
sponse to antigen in vitro (Fig. l A ) ,  and 
CTL activity to viral-infected targets was 
markedly diminished (Fig. 1B). This re- 
sponse was.associated with the stabilization 
of transgend expression, with 82% of hepa- 
tocytes expressing lac2 at day 24 (Table 1) .  
T cell-dependent B cell responses were also 
blunted, with diminished formation of ger- 
minal centers [20.4 t 1.5 per section with- 
out antikB7 and 2.5 ? 0.7 per section with 
anti-B7 ( 1  1 ) I ,  less antiviral neutralizing an- 
tibody (Table I ) ,  and a notable absence of 
class switching from IgM to IgGl and 
IgG2a (Fig. 2). Another inhibitor of this 
pathway, CTLA4-Ig, has a similar effect on 
the cellular responses to vector in liver (7). 

The well-characterized T and B cell re- 
sponses to adenoviral vectors were useful in 
defining the biology of CD40L in T cell 
activation (5 ) .  Full immune competence was 
achieved in the absence of CD40L by acti- 
vating CD40, thereby ruling out a direct 
effect of CD40L on the T cell. We  show that 
CD40 signals an up-regulation of B7.2 on 
the APC that is necessary for T cell activa- 
tion, presumably through its interaction with 
CD28. The interdependence of the CD40 
and CD28 pathways in this system differs 
from the situation in models of allograft re- 
jection where redundancies appear to exist 
(4). Our studies suggest that pharrnacologic 
subversion of the CD40 pathway may be 
effective in abrogating problematic host re- 
sponses to vectors, a concept that has been 
recently validated in rnurine models of liver 
and lung gene transfer (8). 
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Requirement for CD40 Ligand in Costimulation 
Induction, T Cell Activation, and Experimental 

Allergic Encephalomyelitis 
lqbal S. Grewal, Harald G. Foellmer, Kate D. Grewal, 

Jianchao Xu, Fridrika Hardardottir, Jody L. Baron, 
Charles A. Janeway Jr., Richard A. Flavell* 

The mechanism of CD40 ligand (CD40L)-mediated in vivo activation of CD4+ T cells was 
examined by investigation of the development of experimental allergic encephalomyelitis 
(EAE) in CD40L-deficient mice that carried a transgenic T cell receptor specific for myelin 
basic protein. These mice failed to develop EAE after priming with antigen, and CD4+ 
T cells remained quiescent and produced no interferon-y (IFN-y). T cells were primed to 
make IFN-y and induce EAE by providing these mice with B7.1t antigen-presenting cells 
(APCs). Thus, CD40L is required to induce costimulatory activity on APCs for in vivo 
activation of CD4+ T cells to produce IFN-y and to evoke autoimmunity. 

C D 4 0  ligand is preferentially expressed on dendritic cells, and macrophages, and in 
the surface of activated CD4+ T cells and is vitro experimental evidence has shown that 
critical for effective huinoral irninunity (1). CD40-CD40L interaction induces up-regu- 
The  receptor for CD40L, CD40, is ex- lation of major histocompatibility cornplex 
pressed on various APCs, such as B cells, class 11, B7, and other inolecules that po- 
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tentiate the costimulatory activity of APCs 
(2). Our previous studies suggested that in 
vivo activation and clonal expansion of 
CD4+ T cells were severely compromised in 
the absence of CD40L (3). The role that 
CD40L plays in the activation and clonal 
expansion on T cells is, however, unknown. 

To determine the mechanism of enhance- 
ment of activation of autoreactive CD4+ T 
cells by C W L ,  we used an in vivo model of 
a CD4+ T cell-mediated autoimmune dis- 
ease, experimental allergic encephalomyelitis 
(EAE) (4). CWL-deficient or wild-type 
mice that carried a transgenic TCR specific 
for an NH2-terminal peptide of myelin basic 
protein [MBP(Acl-1 1 )] (MBP-TCR trans- 
genic mice) were examined for the potential 
role of CD40-CWL interaction in the de- 
velopment of antigen-induced EAE. The ad- 
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ministration of CWL-specific antibodies to 
mice has been shown to block EAE, autoim- 
mune oophoritis, and colitis, but the mecha- 
nism whereby C W L  mediates this action 
was not addressed (5, 6) .  The MBP-TCR 
transgenic mice described here are well suited 
to mechanistic studies, because almost all of 
the CD4+ T cells in these mice cany trans- 
gene-encoded TCRs and can be monitored by 
staining with antibody to V 8.2 (4), and in 
vivo activation of these T cefls by immuniza- 
tion of mice with MBP(Ac1-11) is required 
to produce EAE. Thus, one can determine the 
activation requirements of these T cells and 
the role of CD40L in T cell activation in 
these mice by inducing EAE with antigen. 

CWL-deficient and wild-type, MBP- 
TCR transgenic mice were immunized with 
MBP(Ac1-11) in complete Freund's adjuvant 
(CFA) and pertussis toxin and were moni- 
tored for EAE (7). EAE did not develop in 
CD40L-deficient mice, whereas wild-type 
mice developed EAE within 7 to 14 days of 
immunization, indicating that CW-CD4OL 
interactions affect the onset of EAE (Fig. 1A). 
To determine whether CD40L-deficient mice 
had central nervous system (CNS) disease 
without the appearance of overt symptoms of 
EAE, we examined the brain and spinal cord 
from mice for pathology (8). Histopathologi- 

cal examination of tissue of wild-type mice 
indicated substantial damage to myelin in 
both brain and spinal cord; however, no dam- 
age was apparent in tissue sections from 
CWL-deficient mice (Fig. 1, B to E). A 
marked infiltration of CD4+ T cells in the 
brain and spinal cord was seen in wild-type 
mice in contrast to CWL-deficient mice, 
which exhibited no CD4+ T cells into these 
tissues (Fig. 1, F to I). Flow cytometric analysis 
showed that the total number and percentage 
of CW- and V 8 2 expressing T cells was 
comparable in c&;-deficient and wild-type 
mice, which suggested that selection of MBP- 
TCR transgenic T cells in CD40Ldeficient 
mice was normal (9). Because almost all of the 
CD4+ T cells in these TCR transgenic mice 
have encephalitogenic potential, we consid- 
ered that CD40L was probably required for 
activation or transmigration of encephalito- 
genic T cells into the CNS. 

To determine whether CD40L-deficient 
MBP-TCR transgenic cells have an intrinsic 
defect in the ability to respond to MBP- 
(Acl-ll), we studied the response of nalve 
T cells to MBP(Ac1-11) in vitro (10). The 
proliferative responses of CD4+ MBP-TCR 
T cells from CD40L-deficient mice were 
indistinguishable from those of wild-type 
CD4+ MBP-TCR T cells (Fig. 2A). Be- 
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cause dendritic cells spontaneously up-reg- 
ulate expression of B7.1 and B7.2 and 
therefore of costimulatory activity when 
cultured on plastic (1 1 ), the in vitro prolif- 
eration of MBP-TCR transgenic cells from 
CD40L-deficient mice in the presence of 
APCs and antigen was expected. Thus, the 
frequency of responding T cells and the 
potential to respond to specific antigen in 
vitro was preserved in CD40L-deficient 
mice, and MBP-TCR transgenic T cells 
that lack CD40L have no gross defects In 
the potential to be activated. 

Despite normal nutnhers of autoantigen- 
specific T ct$s and their ability to proliferate 
in vitro to encephalitogenic antigen, these 
MBP-TCR transgenic T cells failed to cause 
EAE in CD40L-deficient mice. One possible 
reason for this is that in vivo immunization of 
CD40L-deficient mice could result in the in- 
duction of anergy in MBP-TCR transgenic T 
cells. We tested this possibility by measuring 
the in vitro proliferation of draining lymph 
node (DLN) cells frorn mice immunized with 
MBP(Ac1-11) in CFA. DLN cells from both 
wild-type and CD40L-deficient mice prolifer- 
ated equally in response to challenge with 
antigen (Fig. 2B), indicating that the CD4+ T 
cells in CD40L-deficient rnice were not aner- 

gized by exposure to antigen. We also tested 
whether DLN CD4+ T cells frorn rnice irn- 
munized with MBP(Ac1-11) in CFA had 
been primed to produce effector cytokines 
(12). The CD4+ T cells from wild-type TCR 
transgenic mice produced interferon-? (IFN- 
y), whereas CD4+ T cells from transgenic- 
positive, CD40L-deficient mice did not pro- 
duce detectable IFN-? (Fig. 2C), indicating 
that CD40L-deficient TCR transgenic T cells 
were not primed in vivo. Neither T cells from 
wild-type nor from CD40L-deficient mice 
produced detectable interleukin-4 (IL-4) (Fig. 
2D). 

T o  investigate the lack of development of 
EAE in CD40L-deficient mice, we examined 
whether MBP-TCR transgenic T cells de- 
void of CD40L could be activated in vivo by 
challenge with antigen. T cell activation is 
associated with the expression of certain cell 
surface markers: CD44 expression is in- 
creased, whereas CD62L is decreased, and 
CD25 and CD69 are markers of activation 
whose surface expression is increased on ac- 
tivated mature T cells. DLN cells from mice 
immunized with MBP(Ac1-11) in CFA 
were analyzed by flow cytometry to deter- 
mine whether CD40L-deficient T cells were 
activated (13). Most MBP-TCR transgenic 
T cells from wild-type mice were activated, 

whereas most T cells from CD40L-deficient 
mice were quiescent (Fig. 3). Thus, the pres- 
ence of the inducing MBP peptide and en- 
cephalitogenic T cells was not sufficient to 
cause EAE in CD40L-deficient mice. 

One explanation for the lack of EAE in 
MBP-TCR transgenic CD40L-deficient mice 
could be that CD40-CD40L interactions are 
required for the induction of costirnulatory 
activity mediated by molecules, such as B7.1 
and B7.2, on APCs. This hypothesis is con- 
sistent with results of a previous study in 
which T cells in CTLA-4 imtnunoglobulin 
(1g)-treated mice remained unactlvated (14). 
As a consequence, T cells in CD40L-deficient 
mice rnay not receive a second signal through 
CD28 and thus may not be activated. If 
CD40-CD40L interaction is required for the 
induction of costirnulatory activity, then ex- 
pression of B7.1 and B7.2 in the DLNs of 
MBP(Ac1-11)-immunized mice rnay not be 
induced. Immunohistological examination of 
DLNs revealed little B7.1 and B7.2 in T cell 
areas in the CD40L-deficient mice, whereas 
wild-type mice showed many cells expressing 
B7.1 and B7.2 (15). Thus, CD40-CD40L in- 
teractions were required for the expression of 
B7.1 and B7.2, which suggested that lack of 
costirnulation through B7.1 and B7.2 may be 
responsible for protection from EAE in 
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CD40L-deficient mice. 
W e  then tested whether EAE can devel- 

op in CD40L-deficient mice provided with 
APCs that constitutively express costirnu- 
latory molecules (16). W e  injected CD40L- 
deficient MBP-TCR transgenic mice with 
APCs expressing B7.1 obtained from B7.1 
transgenic mice (1 7) or control nontransgenic 
APCs before irnrnunizing with MBP(Ac1-11) 
in CFA. Mice that received B7.1 transgenic 
APCs developed acute EAE (Fig. 4A), and 
histopathological examination of CNS tissues 
showed substantial damage to myelin; control 
(nontransgenic) APCs did not induce EAE 
symptoms or damage to rnyelin in CNS (18). 
We tested whether CD4+ T cells in CD40L- 
deficient mice were primed in vivo in this 
adoptive-transfer system (19). CD4+ T cells 
from CD40L-deficient mice that had received 
B7.1t APCs before imrnunization with MBP- 
(Acl-1 1 ) produced amounts of IFN-y corn- 
parable to those of wild-type mice in response 
to MBP(Ac1-1 I) ,  indicating in vivo priming 
of CD4+ T cells in CD40L-deficient mice 
(Fig. 4B). The inability of CD4+ T cells lack- 
ing CD40L to induce costimulatory activity 
on APCs in vivo is probably responsible for 
the failure of T cells to be activated and lack 
of EAE in CD40L-deficient mice. CD4OL 
undoubtedly plays important roles in subse- 
quent steps in EAE after T cell prirning. For 
example, CD40L may regulate rnacrophage 
activation and IL-12 production by both 
rnacrophages and dendritic cells (20). This 
observation explains the failure of CD40L- 
deficient mice to contain Leishmania infec- 
tion (21). Moreover, antibodies to CD40L 
blocked development of a T helper 1-type 
response in hapten-induced colitis, and ad- 
ministration of IL-12 could reverse this in- 
hibition (6). It is likely that many of these 
functions can be provided by mediators such 
as adjuvant, for the induction of IL-12, and 
IFN-y, for macrophage activation and tissue 
damage in the CNS. 

If CD40L expression is required on T 
cells for up-regulation of costimulatory ac- 
tivity on APCs, but activation of the T cells 
is required for expression of CD40L, then 
how might expression of CD40L on T cells 
be induced in the absence of costirnulation? 
Up-regulation of CD40L requires only stim- 
ulation through the antigenic signal (signal 
I ) ,  not costimulation (signal 2), as blockade 
with CTLA-4 Ig, for example, has no effect 
(22). We therefore propose a two-step inod- 
el for the activation of T cells in the initi- 
ation of the immune response. In step 1,  T 
cell sees antigen 011 the APC, usually a 
dendritic cell. Dendritic cells constitutively 
express little B7.2 and generally do not 
express B7.1 and costilnulatory activity 
(1 1). The  T cell receives the antigenic sig- 
nal (signal I ) ,  which up-regulates CD40L. 
Engagement of CD40 on the dendritic cell 

activates the exuression of the B7.1 and 
B7.2 and costimulatory activity, as well as 
other activators such as IL-12. In steo 2 of T 
cell activation, the costimulatory signal 
from B7 is received by the T cell through 
CD28, which drives the cell into prolifera- 
tion and cytokine production. This rnodel 
provides an additional regulatory step in the 
initiation of the immune response-the ac- 
tivation of the APC prirned with the cog- 
nate antigen by the T cell specific for that 
antigen. This step may thus provide safe- 
guards against an autoimmune response by 
not activating bystander cells but only ac- 
tivating T cells specific for a given antigen 
and the APC carrying that antigen. 
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