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P, the disk was found to drop to a midpoint in the 
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reacted samples, however, the disk remained at the 
top of the sample. 
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small compared with the exchange of heat by con- 
duction of the sample with its surroundings. The 
standard enthalpy for melting H,O ice is -6.01 
kJlmol, or -36.07 kJl6.1 mol for comparison with 
the clathrate-forming reaction. 

17. This cutve was calculated from the melting behavior 
of ice measured in Ne runs and assumes that (i) the 
seed ice grains melted as the ice did in the Ne run, (ii) 
changes in CH, P scale with Ne P changes through 
the Ne and CH, equations of state, and (iii) solubility 
of Ne in H20 is negligible. The magnitude of the P 
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is an exothermic process, heat released by the 
phase change during crystallization increases the T 
at the formation interface, This effect is greater for 
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the melting ice. 

20. Conceptual models of hydrate growth by diffusion have 
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Natural Gases, W. H. Cielewicz, Transl. (PennWell, Tul- 
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the normal melting point [S. Phillpot, J. Lutsko, D. 
Wolf, S. Yip, Phys. Rev. 6 40, 2831 (1 989); see also 
S. Phillpot, S. Yip, D. Wolf, Comput. Phys. 3, 20 
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22. Also, methane hydrate crystallization from a bulk liq- 
uid H20 phase is diff~cult to in~tiate because of the 
low solubility of the gas in the bulk liquid (2, 9). 

23. Several investigators have reported demonstrating 
the phenomenon of superheating ice with respect to 
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(1967); G. Schubert and R. E. Lingenfelter, ibid. 168, 
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245, 505 (1 989). 

24. H. Heard, W. Durham, C. Boro, S. Kirby, in The 
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Monograph 56, A. Duba et a/., Eds, (American Geo- 
physical Union, Washington, DC, 1990), pp. 225- 
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(E), and strain rate (8). 

25. W. Durham, S. Kirby, L. Stern, J .  Geophys. Res. 97, 
E12, 20883 (1992); S. Kirby, W. Durham, M. Bee- 
man, H. Heard, M. Daley, J. Phys. 48 (suppl.), 227 
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A Trinuclear Intermediate in the 
Copper-Mediated Reduction of 0,: 
Four Electrons from Three Coppers 

Adam P. Cole, David E. Root, Pulakesh Mukherjee, 
Edward I. Solomon, T. D. P. Stack* 

The reaction of metal complexes with dioxygen (0,) generally proceeds in 1 :1, 2 :  1, or 
4 : 1 (metal:O,) stoichiometry. A discrete, structurally characterized 3 : 1 product is pre- 
sented. This mixed-valence trinuclear copper cluster, which contains copper in the highly 
oxidized trivalent oxidation state, exhibits 0, bond scission and intriguing structural, 
spectroscopic, and redox properties. The relevance of this synthetic complex to the 
reduction of 0, at the trinuclear active sites of multicopper oxidases is discussed. 

T h e  copper-mediated activation of O, 
plays a vital role in biological and synthetic 
oxidative catalysis (1-4). Recent investiga- 
tions of 0, reduction with Cu(1) complexes 
have shown that Cu is remarkablv versatile 
regarding both the degree of reduition and 
the coordination mode of the reduced 0, 
species. Reductions to superoxide (2,  5), 
peroxide (2,  3 ,  6, 7), and water (2) involv- 
ing one, two, and four electrons (e-), re- 
spectively, have been documented, in 
which each Cu(1) supplies one electron. 
The variety of Cu sites found in natural 
enzymes that bind or activate O2 reflects 
this versatility. The Cu enzymes responsible 
for the 4e- reduction of 0, to H-0-lac- 
case, ceruloplasmin, and ascorbate oxi- 
dase-each contain a trinuclear Cu active 
site (8-1 2) with a; additional mononuclear 
"blue" Cu site 12 A distant (9). The known . , 

binuclear Cu  proteins hemocyanin and ty- 
rosinase (3,  6)  bind 0, through 2e- reduc- 
tion to Oz2-, but the fully reduced 

Department of Chemistry, Stanford University, Stanford, 
CA 94305, USA. 
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trinuclear site is the minimal structural sub- 
unit required for biological 0, bond cleav- 
age and reduction to H 2 0  (8, 13). 

A self-assembly approach to the synthesis 
of a bi- or trinuclear Cu-0,  cluster from 
monomeric Cu(1) complexes and O2 as- 
sumes facile assemblv and thermodvnamic 
stability of the resulting product under the 
reaction conditions. Accordingly, the use of 
simple ligands is an appropriate strategy. A 
number of monomeric 1 : 1 Cu(1):N-peralkyl- 
ated-diamine complexes were examined by 
manometry for 3 : 1 Cu:02 reactivity. Struc- 
tural and spectroscopic studies of the oxida- 
tion of one such Cu(1) complex (1) demon- 
strate the formation of a trinuclear interme- 
diate (2)  in the Cu(1)-mediated reduction of 
0, whose 3 : 1 stoichiometry is unprecedent- 
ed not only in the case of Cu but among all 
discrete metal-0, reactions (Scheme 1, 
Me = methyl). Its structural, spectroscopic, 
and redox properties indicate that, in the 
process of O2  bond cleavage, the three Cu(1) 
sites in 2 are oxidized bv a total of four 
electrons, forming a mixed-valence cluster 
with bridging oxide ligands that stabilize one 
of the Cu sites in its normally inaccessible 
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Me O2 3 MeCN 

~e 

Scheme 1. 

trivalent oxidation state. 
N-Permethylated ( lR,2R)cyclohexane- 

diamine (L) (14) stabilizes Cu(1) as a mono- 
nuclear, trigonal-planar complex with 
MeCN as a labile auxiliary (15) (1). The 
reaction of 1 with excess 0, is extremely 
sensitive to temperature and solvent and is 
performed at atmospheric pressure in cold 
( -80°C), purified CH,Cl, (1 6). Manomet- 
ric measurements indicate that sufficiently 
concentrated (>lo  mM) solutions (17) of 
[l](OTf) (OTf- = C3S03-) absorb one- 
third of an equivalent (equiv) of 0, (1 8) to 
yield a dark brown species (2) formulated as 
[L3Cu30,](OTf),, which displays intense 
ultraviolet absorption bands (Fig. 1). As 1 
cannot be regenerated from 2 by displace- 
ment with gaseous CO, by PPh3 (Ph, phe- 
nyl), or by any combination of evacuation 
and heating, 0, binding is effectively 
irreversible. Once formed, [2](OTf), ex- 
hibits moderate thermal stability, decom- 
posing by a non-first-order process in 
about 3 hours at - 10°C. In the presence 
of trace H,O, the major isolated product is 
the bis(p+i-hydroxo)- dicopper 01) dimer 
~L,Cu,(OH),I(OTf), (19). 

Thermallv sensitive crvstals of 121(OTf). 
were characierized by x-ky dihc;i& (20: 
The unit cell contains G o  crystallographi- 
cally distinct (21 ) trinuclear [L3Cu,0,] clus- 
ters (Fig. 2A) in which the 0-0 bond has 
been broken (0-0 distance = 2.37 A) (Fig. 
2B). The three monoanions associated with 
each trinuclear unit establish an overall 
charge of 3 + per cluster. The [Cu30,] core is 
nearly trigonal bipyramidal, with the 0 atoms 
occupying the axial positions; however, it 

Fig. 1. Ultraviolet-visible spectrum of [2](OTf), (30 
mM) in CH,CI, at -80°C (E = 12,500 M-I cm-l at 
Em, = 290 nm, 15,000 M-l cm-l at 355 nm, 
1400 M-I cm-I at 480 nm, and 800 M-l cm-l at 
620 nm). 

does not possess threefold symmetry (22). In- 
stead, each cluster resides on a crystallograph- 
ic twofold axis that perpendicularly bisects the 
vector between the 0 atoms, passing through 
one Cu atom and relating the remaining pair. 
Each Cu is ligated by two amine N atoms and 
two 0 atoms in a square planar geometry; 
however, the unique Cu site (Cu2, Fig. 2) of 
each cluster exhibits unusually short Cu-0 
bond distances (1.84 A) that are at least 0.15 
A shorter than the other Cu-0 bond distanc- 
es (Fig. ZB), indicative of a higher relative 
oxidation level. Similar Cu-0 bond lengths 
have been reported for the solid-state materi- 
al KCun1O2 (1.84 A) (23), which forms an 
extended square planar [CUO~~~],, lattice, 
and more recently for the pimeric 
[(Bn3TACN),Cu202](SbF,), (1.81 A) (1 7). 
Because the bridging 0 ligands in 2 are com- 
mon to all three metals, the observed bond 
length inequivalence must be predominantly 
due to the unique Cu. The structure is con- 
sistent with the formal descri~tion of 2 as a 
mixed-valence cluster consisting of two 
Cu(I1) ions and a single Cu(III), bridged by 
two p3-0x0 ligands (24). 

Nuclear magnetic resonance (NMR) 
susceptibility measurements (25) per- 
formed on concentrated (30 mM) solu- 
tions of 2 at 183 K indicate a magnetic 
moment (peff) of 2.9(1) Bohr magnetons 
(number in parentheses is the standard 
deviation in the last digit). For polycrys- 
talline solid samples at 1.6 K, the variable- 
field saturation magnetization behavior of 
magnetic circular dichroism (26) transi- 
tions associated with an ultraviolet ab- 
sorption feature of 2 (Fig. 1) indicates a 
ferromagnetically coupled triplet (spin S 
= 1) ground state. In conjunction with its 
solid-state structure, these magnetic prop- 
erties of 2 support an electronic descrip- 

tion in which the two S = '/2 Cu(I1) atoms 
are ferromagnetically coupled, whereas the 
Cu(II1) site is diamagnetic (low spin d8) 
because of its square planar coordination 
and strong ligand field (27). The absorp- 
tion spectrum of 2 contains intense bands 
between 280 and 380 nm (Fig. 1) that are 
attributed to oxide-to-Cu(II1) ligand-to- 
metal charge transfer (LMCT) on the ba- 
sis of their relatively low energy. The high 
intensity of these LMCT spectral features 
indicates a significant degree of covalency 
in the Cu(II1)-0 bond (28). 

Copper(II1) complexes are generally strong 
oxidants, but their potential is significantly 
influenced by ligation geometry and solva- 
tion. A square planar, anionic coordination 
environment that inhibits axial interac- 
tions will favor the d8 Cu(II1) oxidation 
state; reduction potentials near 0 V versus a 
standard calomel electrode have been re- 
ported for such complexes (29). According- 
ly, although treatment of 2 at -80°C with 
ferrocene (reduction potential E = 0.48 ' P 
V) (30) quenches its characterist~c optical 
absorptions, 2 fails to react with the more 
oxidatively resistant acetylferrocene (E,,, 
= 0.79 V) (31), placing its potential be- 
tween these values. Spectrophotometric ti- 
tration of 2 with 1 eauiv of 2.4-di-m- 
butylphenol in the abser;ce of 0, iields the 
6,6'-coupled product (3,3',5,5'-tetra-tert- 
butyl-2,2'-biphenol) quantitatively. In this 
reaction, 2 acts as both le- oxidant and 
Droton accewor. 

The assembly of 2 at low temperature in- 
dicates that the [Cu302] core is an enthalpi- 
cally preferred arrangement in an aprotic en- 
vironment. Stabilization of the Cu(II1) center 
is attributed to favorable covalent bonding 
interactions with the oxide ligands and to the 
optimal square planar coordination achieved 

Cul '-Cu2 2.705(2) 

Fig. 2. (A) ORTEP representation (50% probability), atom-labeling scheme (unlabeled ellipsoids repre- 
sent carbon atoms). (B) [N,Cu,O,] core metrical parameters showing interatomic distances (in ang- 
stroms) for one [L&u30,I3+ cluster (2). The view is oriented down the crystallographically imposed 
twofold axis on which Cu2 resides. Selected interatomic distances (in angstroms): Cul -Cu2,2.641(3); 
Cul -Cull, 2.704(3); 01 -01 ', 2.37; N1 -N2, 2.86; and N3-N3', 2.73. Selected angles (in degrees): 
01 -Cul-Ol ', 72.6(6)"; 01 -Cu2-Ol ', 80.4(8)"; Cul-01 -Cull, 85.3(5)"; and Cul -01 -Cu2,86.7(5)". 
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by each Cu within the [Cu302] core. Upon 
inspection of the crystal structure of the fully 
reduced form of ascorbate oxidase (11 ). the 

\ ,, 

three trigonally ligatedoCu(I) centers (average 
Cu...Cu distance, 4.5 A )  appear geometrically 
predisposed toward accommodation of O2 and 
formation of a [Cu,02] cluster. However, no 
current spectroscopic studies of the metastable 
oxygen intermediates of multicopper oxidases 
and their derivatives support the existence 
of an intenselv absorbing 0x0-Cu(II1) chro- 
mophore, and no unusuaEy short C u - 0  bond 
distances such as those observed in 2 are 
indicated ( 1  2,  13, 32). In accordance with 
these..Studies, however, the facile reaction 
of three Cu(1) monomers with O2 to form 
the mixed-valence bis(p3-oxo)[Cu(II)Cu(II) 
Cu(III)] species 2 does suggest that O2 bond 
cleavage at trinuclear Cu sites requires full 
4 e  reduction of 0,. In the case of native 
laccase, the fourth electron is provided by the 
remote "blue" Cu center, whereas in 2, the 
extra electron must'be obtained at the cost of 
further oxidation of one of the Cu sites. 
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Age and Paleogeographical Origin of 
Dominican Amber 

Manuel A. Iturralde-Vinent* and R. D. E. MacPhee 

The age and depositional history of Dominican amber-bearing deposits have not been 
well constrained. Resinites of different ages exist in Hispaniola, but all of the main 
amberiferous deposits in the Dominican Republic (including those famous for yielding 
biological inclusions) were formed in a single sedimentary basin during the late Early 
Miocene through early Middle Miocene (1 5 to 20 million years ago), according to available 
biostratigraphic and paleogeographic data. There is little evidence for extensive rework- 
ing or redeposition, in either time or space. The brevity of the depositional interval (less 
than 5 million years) provides a temporal benchmark that can be used to calibrate rates 
of molecular evolution in amber taxa. 

13, J, L. Cole, G. 0, ian, i, K, Yang, K, 0 .  Hodgson, E, I n  the Dominican Republic, amber ( 1  ) oc- area"). Amber from the northern area has 
I. Solomon, ibid., p. 2243. 

14, The (1R,2R)-cyclohexanediamine backbone was curs in commercially exploitable quantities been suggested to be as old as Early Eocene 
chosen both for its preoraanized nature and its in two zones (Fig. 1): north of Santiago de or as young as Early Miocene (2-7); esti- 
chirality. In its energeticallybreferred conformation 
with the two amine substltuents equatorially posi- 
tioned, this ligand is preorganized for binding a single 
metal. The enantiomeric purity of the ligand signifi- 
cantly reduces the probability of forming diastereo- 
meric complexes. 

15. Although 1 has not been structurally characterized, its 
'H NMR spectrum in the diamine ligand region is 
nearly identical to that of the structurally characterized 
trigonal planar complex [LCu(PPh3)](CF3S03) which 
is formed upon addition of PPh, to a solution of 1. The 
N-perethylated analog of 1, [(L')Cu(CH3CN)](CF3S03) 
[L' = N,N,N',N1-tetraethyl-trans-(IR,2R)-cyclohex- 

10s Caballeros (the "northern area") and 
northeast of Santo Domingo (the "eastern 
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mates for the eastern area are more diverse, 
ranging from Cretaceous to Recent (2-4, 
6-9). Age spreads of this magnitude are 
implausible, but to date no resolution of the 
age of Dominican amber has met with wide 
acceptance. The resolution offered here is 
based on  a synthesis of available biostrati- 
graphic and paleogeographic data from sev- 
eral parts of Hispaniola (Fig. 2). 

In the eastern area, amber-bearing sedi- 
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