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Appetite-Suppressing Effects of Urocortin,
a CRF-Related Neuropeptide

Mariarosa Spina, Emilio Merlo-Pich,* Raymond K. W. Chan,
Ana Maria Basso, Jean Rivier, Wylie Vale, George F. Koobf

The neuropeptide corticotropin-releasing factor (CRF) is well known to act on the central
nervous system in ways' that mimic stress and result in decreases in exploration, in-
creases in sympathetic activity, decreases in parasympathetic outflow, and decreases
in appetitive behavior. Urocortin, a neuropeptide related to CRF, binds with high affinity
to the CRF, receptor, is more potent than CRF in suppressing appetite, but is less potent
than CRF in producing anxiety-like effects and activation. Doses as low as 10 nanograms
injected intracereBroventricularIy were effective in decreasing food intake in food-de-
prived and free-feeding rats. These results suggest that urocortin may be an endogenous
CRF-like factor in the brain responsible for the effects of stress on appetite.

Corticotropin—releasing factor, a neuropep-
tide isolated from the mammalian brain (1),
has been implicated in the mediation of the
integrated physiological response to stress
(2, 3). When released from the median
eminence into the hypophysial portal sys-
tem, CRF exerts powerful effects to stimu-
late the release of adrenocorticotropic hor-
mone (ACTH) from the pituitary; thus, as a
hypothalamic-releasing factor, CRF regu-
lates glucocorticoid responses to stress (2).
When infused within the central nervous
system, CRF mimics most of the behavioral
responses to stress (3). Central administra-
tion of CRF increases arousal, as measured
by changes in cardiovascular parameters (4)
and locomotor activity (5), and, like stress,
produces “anxiogenic-like” and anorectic
effects in a variety of behavioral paradigms
(3, 6). These effects are largely independent

M. Spina, E. Merlo-Pich, A. M. Basso, G. F. Koob, De-
partment of Neuropharmacology, The Scripps Research
Institute, 10666 North Torrey Pines Road, La Jolla, CA
92037, USA.

R. K. W. Chan, Laboratory of Neuronal Structure and
Function, The Salk Institute, La Jolla, CA 92037, USA.
J. Rivier and W. Vale, Clayton Foundation Laboratories
for Peptide Biology, The Salk Institute, La Jolla, CA
92037, USA.

*Present address: Geneva Biomedical Research Institute,
Glaxo-Welicome R&D, 14, Chemin des Aulx, 1228 Plan-
les-Ouates, Case Postale 674, Geneva, Switzerland.
1To whom correspondence should be addressed.

of the activation of ACTH and corticoids
(7), suggesting a direct action on brain CRF
receptors implicated in behavioral respons-
es to stressors. Until recently, only one
endogenous CRF had been isolated from
the mammalian brain, suggesting that only
CREF itself was directly involved in stress-
induced behavioral changes, including an-
orexia. However, the identification in the
mammalian brain of another neuropeptide

of the CRF family, urocortin (UCN) (8),
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has reopened the question, suggesting a po-
tential physiological role for endogenous
UCN in activating central CRF receptors.

The major cellular sites of expression of
UCN in the rat brain were detected in the
Edinger-Westphal nucleus, the lateral supe-
rior olive, the lateral hypothalamus, and the
supraoptic nucleus, all regions that do not
contain CRF mRNA (8). Binding studies
have shown that UCN binds with very high
affinity to both the identified CRF receptors,
CRF,; (9) and CRF, (10), but has a much
higher affinity for the CRF, receptor than
CREF, and the distribution of UCN fibers
correlates well with the distribution of the
CREF, receptor but not the CRF,; receptor
(8). These observations led to the hypothesis
that central infusion of UCN may produce
behavioral effects that only partially overlap
with those produced by CRF. To test this
hypothesis, we analyzed the effects of a wide
range of concentrations of UCN, urotensin
I, and r-h CRF (0.01 to 10.0 pg per animal)
after they were infused into the cerebral
ventricle (ICV) of rats previously implanted
with intracerebroventricular cannulas.

Rats were food-deprived for 24 hours
and food ‘consumption was tested for 2
hours after ICV injection of vehicle or dif-
ferent doses of the peptide. UCN consis-

Table 1. Effect of central and peripheral administration of urocortin on mean blood pressure. Data are
represented as mean = SEM (n = 5). Changes in mean arterial blood pressure (AMAP) were calculated
as the difference between the basal values taken before urocortin administration. Mild hypertensive
effects were obtained after central injection, whereas peripheral administration exerted prolonged
hypotensive effects. No significant change in myocardial contractility was recorded after central admin-
istration (22). Data were analyzed by using analysis of variance (ANOVA) followed by Tukey's test. ICV,

intracerebroventricular; SC, subcutaneous.

Urocortin Time course of AMAP (mm Hg)
dose
(n) 30 min 60 min 90 min
Central (ICV) administration
0 -0.9 = 0.04 1.5 +0.02 0.8 = 0.11
1.0 6.9 + 2.50 0.8 =012 0.2 +0.05
10.0 12.2 + 1.32* 6.3 +0.15 1.8 +0.14
Peripheral (SC) administration .
0 1.5+ 0.04 1.2 = 0.02 -0.8 = 0.15
10.0 —17.8 = 1.44*% —26.7 = 2.31*f —32.7 = 2.61%}
*P < 0.01 versus vehicle; TP < 0.01 versus central administration, at the same urocortin dose.
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Fig. 1. (A) Effects of various doses of UCN on food intake in rats previously food-deprived for 24 hours.
UCN at doses greater than 0.1 ug significantly attenuated food consumption (*, P < 0.05 compared
with the vehicle value, Newman-Keuls test; #, P < 0.05 Student’s t test, vehicle versus treatment). (B)
Comparison of the effects of various doses of UCN, urotensin, and CRF on food intake as measured 120
min after peptide ICV infusion. Regression analysis and test for parallelism indicates that CRF was
significantly (P < 0.05) less effective than UCN and urotensin in suppressing food intake after 24-hour
food deprivation' (C) Effects of various doses of UCN, urotensin, and CRF on locomotor activity
[measured as the number of crossovers during a 3-hour period (78)]. All peptides produced significant
increases in crossovers at the doses of 1 wgand 10 ug (P < 0.01, Newman-Keuls test when compared
with vehicle). At these doses, UCN locomotor scores were significantly lower than those of CRF (*, P <
0.05, Newman-Keuls test compared with CRF values). (D) Effects of UCN, urotensin, and CRF on the
elevated plus-maze. For UCN and urotensin, the rats were injected ICV with the peptides and tested for
5 min in the maze. The time spent in the open arm was used as dependent measurement to estimate the
drive to explore the mildly aversive open arms. The data for CRF is redrawn from (27). Here the rats were
injected 30 min before testing, and CRF reduced the time spent in the open arm at doses of 0.5to 1 g,
whereas no significant effect was seen in the same dose range for UCN and urotensin (*, P < 0.05
compared with vehicle values, Newman-Keuls test).

Table 2. Effect of urocortin (ICV) on water intake in water-deprived animals. Data are represented as
mean * SEM (n = 7 for each group) of cumulative water intake in rats deprived of water for 24 hours.

Urocortin Time after injection
dose
(n9) 30 min 60 min 90 min
Vehicle 144 +11 16.9 = 0.8 193+ 15
0.01 166 0.8 17.3+15 17616
0.1 147 1.7 16,017 16.0 £ 1.8
1.0 10.6 = 0.9* 10.7 = 0.9** 10.7 = 1.0

*P < 0.05; **P < 0.01, Student’s t test.

Table 3. Effect of urocortin (ICV) on food intake in nondeprived animals. Values represent mean + SEM
of the number of 45-mg food pellets ingested over each time period (n = 6 rats). Each rat received each
dose (76):

Urocortin Time after injection
dose
(nQ) 0 to 3 hours 0 to 6 hours 0to 12 hours 7 to 12 hours
Vehicle 113.2 £ 12.6 2353 + 16.7 399.8 + 37.5 164.5 + 24.9
0.01 126.3 = 11.0 2422 + 26.8 398.3 + 33.5 156.2 + 32.5
0.1 -69.2 £ 15.4** 142.2 + 22,8 303.8 * 48.0* 161.7 = 338.2
1.0 18.2 £ 4.9 54,8 + 19.1** 128.7 = 32.1* 68.0 + 26.4*

*P < 0.05;**P < 0.01, paired t test preplanned comparison after a significant overall within-subjects analysis of
variance.
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tently suppressed food consumption in a
dose-related manner (Fig. 1, A and B) (11),
showing a potency similar to urotensin
[UCN EDs, (median effective dose) = 0.19
pg; urotensin EDsy = 0.27 pig]. UCN was
significantly more potent than CRF in pro-
ducing its anorectic effects (CRF ED5, =
6.82 pg; Fig. 1B). Indeed, previous studies
have shown that 5 wg of CRF is required to
produce major effects on food intake in
food-deprived rats (12).

To rule out the possibility that the sup-
pression of food intake obtained with central
infusion of UCN is produced by indirect
effects due to the leakage of the peptide into
the peripheral blood stream, we measured
arterial blood pressure in freely moving rats
after central administration of UCN (1 to 10
wg) (13). UCN and the other CRF-related
peptides are known to produce prolonged
hypotension when administered systemically
(intravenously) and transient hypertension
when administered centrally (4, 8). In the
present experiment, mild hypertensive ef-
fects were recorded after UCN ICV infusion,
whereas prolonged hypotensive effects were
observed only after subcutaneous administra-
tion of the same dose (Table 1). These ob-
servations support the hypothesis that UCN-
induced anorexia is not mediated by nonspe-
cific central effects associated with reduced
blood pressure. UCN did not decrease water
intake in fluid-deprived rats at doses of 0.01
and 0.1 pg (Table 2), further illustrating the
specificity of the appetite-suppressing effects.
UCN also failed to produce a taste aversion
except at the dose of 1 pg ICV (14), again
suggesting selective and specific appetite
suppression effects at low doses.

The appetite-suppressing effects of UCN
were further studied in rats that were not
deprived of food. After a period of training,
six animals were allowed to work to obtain
45-mg pellets and 100 pl of water ad libitum
during the dark phase of the light-dark cycle
using a nose-poke response (15). We ob-
served significant decreases in food and wa-
ter intake with doses as low as 100 ng ICV,
and UCN decreased food and water intake
for up to 12 hours, depending on the dose
(Table 3). UCN decreased the meal size
(number of pellets per bout) and frequency
of meals (bouts) with significant effects at
10 ng for meal size and 1 pg for meal bouts
(Table 4). At 1 pg, meal bouts were virtu-
ally abolished for 6 hours (15). Water intake
paralleled that of food intake with and with-
out peptide treatment. This selective effect
on meal size with no effect on the number of
bouts at the low doses of UCN is identical to
that observed with the appetite-suppressing
drug d-fenfluramine (Table 4), thus demon-
strating a behavioral profile of an endoge-
nous brain peptide identical to that of a
known anti-appetite agent (16).



More interesting was the observation
that ICV administration of UCN did not
produce “anxiogenic-like” behavior when
rats were tested in the elevated plus-maze
(Fig. 1D), a test of emotionality in rodents
that has been shown to be sensitive to CRF
(17). In this paradigm, urotensin was active
only at the highest dose tested (10 pg),
whereas CRF displayed a significant effect
at low doses (0.5 pg) (3). UCN was also
significantly less effective than CRF in ac-
tivating locomotor behavior in a familiar
environment (Fig. 1C) (18).

These results suggest that UCN at low
doses has mildly activating, powerful ano-
rectic effects with very low anxiogenic-like
activity or aversive effects. This profile of
behavioral activity partially overlaps with
the effects of urotensin, a nonmammalian
peptide, and to a lesser extent, with those of
CRF.

The neuropharmacological mechanisms
accounting for the differential behavioral
effects of UCN compared with CRF are at
present difficult to explain. However, the
higher affinity of UCN and urotensin for
the CREF, receptor with respect to CRF may
partly explain some of the differences be-
tween UCN and CRF in their central ef-
fects (8). In addition, the brain distribution
of the 411-amino acid variant of CRF,,
CREF,,, is restricted to a limited set of brain
areas, including lateral septum, ventrome-
dial hypothalamus, and medial amygdaloid
nucleus (10), and is consistent with fibers
and terminals stained with antiserum to
UCN or urotensin (8). Interestingly, all

Table 4. Effect of urocortin (ICV) and d-fenflura-
mine (administered intraperitoneally) on meal
bouts and meal size from O to 6 hours in nonde-
prived rats. Meal bouts were arbitrarily defined as
continuous nose pokes for food pellets with no
inter-poke interval greater than 60 s and a mini-
mum inter-bout interval of 15.min (77). Meal size
was defined as the number of pellets earned per
bout. For urocortin, six rats were tested at 3-day
intervals with all doses of urocortin in a Latin-
square design. For d-fenfluramine, six rats were
tested at 5-day intervals in a Latin-square design.
Dose of d-fenfluramine is in milligrams per kilo-
gram of body weight.

Number Mean pellets
Dose of bouts per bout
Urocortin
Vehicle 55+ 0.8 290.56 + 5.8
0.01 ng 6.3+07 21.0 £ 2.0
0.1 ng 58+ 1.1 18.2 = 1.4*
1.0 pg 2.3 = 0.7 11.0 = 3.1
d-Fenfluramine
Vehicle 6.2+0.5 335+ 47
0.75 mg/kg 6.5 +0.7 258 £5.8
1.5 mg/kg 5003 16.3 = 0.8*
3.0 mgrkg 1.7 £ 0.8* 9.8 = 3.7**

*P < 0.05; *P < 0.01, paired t test.

these brain regions have been implicated in
the control of food consumption and diges-
tive functions (19).

Finally, UCN has a high affinity for the
CRF binding protein (8); thus, a particular
combination of differential binding protein—
CREF, receptor distribution (20) could ex-
plain the selective functional effects. For
example, there is some evidence that the
CRF binding protein and the CRF, receptor
are more localized cortically than subcorti-
cally, which would decrease the effective
concentration of UCN at sites where CRF,
receptors are localized. Thus, in subcortical
regions where CRF, receptors are primarily
localized, the binding protein is less abun-
dant and these subcortical CRF, sites may
mediate the anorexic effects of UCN.

The involvement of an endogenous li-
gand for CRF receptors in anorexia was also
suggested by the effects of the CRF antag-
onist a-helical CRF(9-41) in reversing the
attenuation of food consumption induced
by stress and in enhancing the increase of
food consumption induced by food depriva-
tion or central administration of neuropep-
tide Y, a potent orexigenic agent (6). Be-
cause a-helical CRF(9-41) blocks the ef-

- fects of UCN, CRF, urotensin, and sauvag-
ine on both CRF,; and CRF, receptors in
vitro (8, 10, 11), definitive selective antag-
onist effects are still unavailable. However,
these data do suggest that the role of UCN
in the behavioral responses previously at-
tributed to CRF may be ultimately assessed
pharmacologically with selective CRF an-
tagonists (3) or in mice having null muta-
tions for specific receptors and ligands. The
selective functional effects on food intake of
this mammalian peptide member of the CRF
family opens up opportunities for the explo-
ration of the role of stress and the CRF
systems in appetite regulation.
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The Mental Representation of Hand Movements
After Parietal Cortex Damage

Angela Sirigu,” Jean-René Duhamel, Laurent Cohen,
Bernard Pillon, Bruno Dubois, Yves Agid -

Recent neuroimagery findings showed that the patterns of cerebral activation during the
mental rehearsal of a motor act are similar to those produced by its actual execution. This
concurs with the notion that part of the distributed neural activity taking place during
movement involves internal simulations, but it is not yet clear what specific contribution
the different brain areas involved bring to this process. Here, patients with lesions
restricted to the parietal cortex were found to be impaired selectively at predicting,
through mental imagery, the time necessary to perform differentiated finger movements
and visually guided pointing gestures, in comparison to normal individuals and to a
patient with damage to the primary motor area. These results suggest that the parietal
cortex is important for the ability to generate mental movement representations.

Prediction is essential to many aspects of
'motor behavior; from postural compensa-
tion to the tracking of moving objects and
the planning of a complex trajectory. The
capacity of the central nervous system to
simulate and anticipate the behavior of the
motor apparatus is a central issue not only
in experimental and computational studies
of motor control (1), but also in the study of
mental processes. Humans can use this ca-
pacity to improve a motor skill or induce
sensorimotor plasticity through mental re-
hearsal (2). Decety and his colleagues have
shown that motor imagery can be used to
predict the time needed to complete a
movement, and that the mental reenact-
ment of an effortful exercise causes the
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same vegetative changes as its actual per-.
formance (3). Studies of cerebral metabolic
activity have demonstrated that most of the
regions that are active during overt move-
ment execution such as the parietal and
premotor cortices, the basal ganglia, and
the cerebellum are active during mental
simulation as well (4).

These results suggest that motor impair-
ments caused by a cerebral lesion might also
affect mentally simulated actions. We re-
ported a case of a patient with motor cortex
damage where the simulation of a move-
ment with the affected limb produced a
sensation of mental drag and matched that
limb’s reduced motor efficiency (5). Parallel
impairments in imagined and executed
movements were also observed in patients
with basal ganglia dysfunction due to Par-
kinson’s disease (6). This observation sug-
gests that the excitatory output produced in
the cortico-striatal pathways during motor
imagery closely mimics what occurs during
movement execution, and that it is acces-
sible to conscious evaluation. Furthermore,





