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~ppetite-Suppressing Effects of Urocortin, has reopened the question, suggesting a PO- 

a CRF-Related Neuropeptide 
.tential physiological role for endogenous 
UCN in activating central CRF receptors. . . 

The inajor cellular sites of expression of 
Mariarosa Spina, Emilio Merlo-Pith," Raymond K. W. Chan, UCN in the rat brain were detected in the 
Ana Maria Basso, Jean Rivier, Wylie vale, George F. Koobi. Edinger-Westphal nucleus, the lateral supe- 

rior olive, the lateral hypothalamus, and the 
The neuropeptide corticotropin-releasing factor (CRF) is well known to act on the central supraoptic nucleus, all regions that do not 
nervous system in ways'that mimic stress and result in decreases in exploration, in- contain CRF lnRNA (8). Binding studies 
creases in sympathetic activity, decreases in parasympathetic outflow, and decreases have shown that UCN binds with very high 
in appetitive behavior. Urocortin, a neuropeptide related to CRF, binds with high affinity affinity to both the identified CRF receptors, 
to the CRF, receptor, is more potent than CRF in suppressing appetite, but is less potent CRF, (9) and CRF2 ( lo ) ,  but has a inuch 
than CRF in produting anxiety-like effects and activation. Doses as low as 10 nanograms higher affinity for the CRF2 receptor than 
injected intracerebroventricularly were effective in decreasing food intake in food-de- CRF, and the distribution of UCN fibers 
prived and free-feeding rats. These results suggest that urocortin may be an endogenous correlates well with the distribution of the 
CRF-like factor in the brain responsible for the effects of stress on appetite. CRF, receptor but not the CRFl receptor 

(8). These observations led to the hypothesis 
that central inf~lsion of UCN lnay produce 
behavioral effects that only partially overlap 

Corticotropin-releasing factor, a neuropep- of the activation of ACTH and corticoids with those produced by CRF. To test this 
tide isolated from the inainmalian brain ( 1  ), ( 7 ) ,  suggesting a direct action on brain CRF hypothesis, we analyzed the effects of a wide 
has been implicated in the mediation of the receptors implicated in behavioral respons- range of concentrations of UCN, urotensin 
integrated physiological response to stress es to stressors. Until recently, only one I, and r-h CRF (0.01 to 10.0 kg per animal) 
(2,  3). When released from the inedian endogenous CRF had been isolated from after they were infi~sed into the cerebral 
eminence into the hypophysial portal sys- the inaminalian brain, suggesting that only ventricle (ICV) of rats previously implanted 
tein, CRF exerts powerfill effects to stiinu- CRF itself was directly involved in stress- with intracerebroventricular cannulas. 
late the release of adrenocorticotropic hor- induced behavioral changes, including an- Rats were food-deprived for 24 hours 
mone (ACTH) froin the pituitary; thus, as a orexia. However, the identification in the and food consumption was tested for 2 
hypothalamic-releasing factor, CRF regu- inaininalian brain of another neuropeptide hours after ICV injection of vehicle or dif- 
lates glucocorticoid responses to stress (2). of the CRF family, urocortin (UCN) (a) ,  ferent doses of the peptide. UCN consis- 
When infused within the central nervous 
system, CRF inimics inost of the behavioral 
responses to stress ( 3 ) .  Central adininistra- Table 1. Effect of central and peripheral administration of urocortin on mean blood pressure. Data are 
tion of CRF increases arousal, as ineasured represented as mean -+ SEM (n = 5). Changes in mean arterial blood pressure (AMAP) were calculated 
by changes in cardiovascular paralneters (4) as the difference between the basal values taken before urocortin administration. Mild hypertensive 

and locomotor activity (51, and, like stress, effects were obtained after central injection, whereas peripheral administration exerted prolonged 
hypotensive effects. No significant change in myocardial contractility was recorded after central admin- 

produces "anxiogenic-like" and istration (22). Data were analyzed by using analysis of variance (ANOVA) followed by Tukey's test. ICV, 
effects in a variety of behavioral paradigins intracerebrovent[icular; SC, subcutaneous. 
(3,  6).  These effects are largely independent 

M. Spina, E. Merlo-Pich, A. M. Basso, G. F. Koob, De- Urocortin Time course of AMAP (mm Hg) 
partment of Neuropharmacology, The Scripps Research dose 
Institute, 10666 North Torrey Pines Road, La Jolla, CA (l.9) 30 min 60 min 90 min 
92037, USA. 
R. K. W. Chan, Laboratory of Neuronal Structure and Central (ICV) administration 
Function, The Salk Institute, La Jolla, CA 92037, USA. 0 0 . 9  -C 0.04 1.5 t 0.02 0.8 t 0.1 1 
J. River and W. Vale, Clayton Foundation Laboratories 1.0 6.9 -C 2.50 0.8 +- 0.12 0.2 i- 0.05 
for Peptide Biology, The Salk Institute, La Jolla, CA 10.0 12.2 t- 1.32* 6.3 ? 0.15 1.8 ? 0.14 
92037, USA. Peripheral (SC) administration 
*Present address: Geneva.Biomedica1 Research Inst~tute, 0 1.5 t 0.04 1.2 -C 0.02 0 . 8  ? 0.15 
Glaxo-Welcome R&D, 14, Chem~n des Auix, 1228 Plan- 10.0 17.8 +- 1.44*-1. -26.7 t 2.31*.1- -32.7 +- 2.61*.1- 
les-Ouates, Case Postale 674, Geneva, Swtzerand. 
tTo whom correspondence should be addressed. ' P  < 0.01 versus vehicle; t P  i 0.01 versus central administration, at the same urocortn dose. 
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Fig. 1. (A) Effects of various doses of UCN on food intake in rats previously food-deprived for 24 hours. 
UCN at doses greater than 0.1 p.g significantly attenuated food consumption (*, P < 0.05 compared 
with the vehicle value, Newman-Keuls test; #,  P < 0.05 Student's t test, vehicle versus treatment). (B) 
Comparison of the effects of various doses of UCN, urotensin, and CRF on food intake as measured 120 
min after peptide ICV infusion. Regression analysis and test for parallelism indicates that CRF was 
significantly (P < 0.05) less effedtive than UCN and urotensin in suppressing food intake after 24-hour 
food deprivation? (C) Effects of various doses of UCN, urotensin, and CRF on locomotor activity 
[measured as the number of crossovers during a 3-hour period (18)l. All peptides produced significant 
increases in crossovers at the doses of 1 kg and 10 kg (P < 0.01, Newman-Keuls test when compared 
with vehicle). At these doses, UCN locomotor scores were significantly lower than those of CRF (*, P < 
0.05, Newman-Keuls test compared with CRF values). (D) Effects of UCN, urotensin, and CRF on the 
elevated plus-maze. For UCN and urotensin, the rats were injected ICV with the peptides and tested for 
5 min in the maze. The time spent in the open arm was used as dependent measurement to estimate the 
drive to explore the mildly aversive open arms. The data for CRF is redrawn from (21). Here the rats were 
injected 30 min before testing, and CRF reduced the time spent in the open arm at doses of 0.5 to 1 kg, 
whereas no significant effect was seen in the same dose range for UCN and urotensin (*, P < 0.05 
compared with vehicle values, Newman-Keuls test). 

Table 2. Effect of urocortin (ICV) on water intake in water-deprived animals. Data are represented as 
mean i SEM (n = 7 for each group) of cumulative water intake in rats deprived of water for 24 hours. 

Urocortin Time after injection 
dose 
(kg) 30 min 60 min 90 min 

Vehicle 14.4 -t 1.1 16.9 ? 0.8 19.3 ? 1.5 
0.01 15.6 -t 0.8 17.3 2 1.5 17.6 -t 1.6 
0.1 14.7 ? 1.7 15.0 2 1.7 16.0 i 1.8 
1 .O 10.6 i 0.9* 10.7 -t 0.9** 10.7 ? 1 .O** 

*P < 0.05: **P < 0.01, Student's t test. 

Table 3. Effect of urocortin (ICV) on food intake in nondeprived animals. Values represent mean -t SEM 
of the number of 45-mg food pellets ingested over each time period (n = 6 rats). Each rat received each 
dose (1 6). 

Urocortin Time after ~njection 
dose 
(kg) 0 to 3 hours 0 to 6 hours 0 to 12 hours 7 to 12 hours 

Vehicle 113.2 i 12.6 235.3 2 16.7 399.8 ? 37.5 164.5 2 24.9 
0.01 125.3 -t 11 . O  242.2 ? 26.8 398.3 -t 33.5 156.2 2 32.5 
0.1 69.2 i 15.4** 142.2 i 22.8** 303.8 -t 48.0* 161.7 -t 33.2 
1 .O 18.2 ? 4.9** 54.8 -t 19.1** 123.7 ? 32.1 ** 68.0 -t 26.4* 

'P < 0.05; **P < 0 01, pared t test prepanned comparison after a significant overall w~thn-subjects anayss of 
variance. 

tently suppressed food consumption in a 
dose-related manner (Fig. 1, A and B) ( 1 1 ), 
showing a potency similar to urotensin 
[UCN ED,, (median effective dose) = 0.19 
kg; urotensin ED,, = 0.27 pg]. UCN was 
significantly more potent than CRF in pro- 
ducing its anorectic effects (CRF ED,, = 

6.82 kg; Fig. 1B). Indeed, previous studies 
have shown that 5 kg of CRF is required to 
produce major effects on food intake in 
food-deprived rats ( 12). 

To rule out the possibility that the sup- 
pression of food intake obtained with central 
infusion of UCN is produced by indirect 
effects due to the leakage of the peptide into 
the peripheral blood stream, we measured 
arterial blood pressure in freely moving rats 
after central administration of UCN (1 to 10 
kg) (13). UCN and the other CRF-related 
peptides are known to produce prolonged 
hypotension when administered systemically 
(intravenously) and transient hypertension 
when administered centrallv (4. 8). In the , . ,  , 

present experiment, mild hypertensive ef- 
fects were recorded after UCN ICV infusion, 
whereas prolonged hypotensive effects were 
observed only after subcutaneous administra- 
tion of the same dose (Table 1). These ob- 
servations support the hypothesis that UCN- 
induced anorexia is not mediated by nonspe- 
cific central effects associated with reduced 
blood pressure. UCN did not decrease water 
intake in fluid-deprived rats at doses of 0.01 
and 0.1 pg (Table 2), further illustrating the 
specificity of the appetite-suppressing effects. 
UCN also failed to produce a taste aversion 
except at the dose of 1 kg ICV (14), again 
suggesting selective and specific appetite 
suppression effects at low doses. 

The appetite-suppressing effects of UCN 
were further studied in rats that were not 
deprlved of food. After a period of training, 
six animals were allowed to work to obtain 
45-mg pellets and 100 k1 of water ad libitum 
during the dark phase of the light-dark cycle 
using a nose-poke response (15). We ob- 
served significant decreases in food and wa- 
ter intake with doses as low as 100 ng ICV, 
and UCN decreased food and water intake 
for up to 12 hours, depending on the dose 
(Table 3). UCN decreased the meal size 
(number of pellets per bout) and frequency 
of meals (bouts) with significant effects at 
10 ng for meal size and 1 kg for meal bouts 
(Table 4). At 1 kg, meal bouts were virtu- 
allv abolished for 6 hours (1 5). Water intake 
paralleled that of fiod intake with and with- 
out oeotide treatment. This selective effect . . 
on meal size with no effect on the number of 
bouts at the low doses of UCN is identical to 
that observed with the appetite-suppressing 
drug d-fenfluramine (Table 4), thus demon- 
strating a behavioral profile of an endoge- 
nous brain peptide identical to that of a 
known anti-appetite agent (1 6). 
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More interesting was the observation 
that ICV administration of UCN did not 
produce "anxiogenic-like" behavior when 
rats were tested in the elevated plus-maze 
(Fig. ID), a test of emotionality in rodents 
that has been shown to be sensitive to CRF 
(1 7). In this paradigm, urotensin was active 
only at the highest dose tested (10 pg), 
whereas CRF displayed a significant effect 
at low doses (0.5 pg) (3). UCN was also 
significantly less effective than CRF in ac- 
tivating locomotor behavior in a familiar 
environment (Fig. IC)  ( 1  8) .  

These results suggest that UCN at low 
doses hps mildly activating, powerfill ano- 
rectic effects with very low anxiogenic-like 
activity or aversive effects. This profile of 
behavioral activity partially overlaps with 
the effects of urotensin, a nonmammalian 
peptide, and to a lesser extent, with those of 
CRF. 

The neuropharmacological mechanisms 
accounting for the differential behavioral 
effects of UCN compared with CRF are at 
present difficult to explain. However, the 
higher affinity of UCN and urotensin for 
the CRF, receptor with respect to CRF may 
partly explain\some of the differences be- 
tween UCN and CRF in their central ef- 
fects (8). In addition, the brain distribution 
of the 411-amino acid variant of CRF,, 
CRF,,, is restricted to a limited set of brain 
areas, including lateral septum, ventrome- 
dial hypothalamus, and medial amygdaloid 
nucleus ( lo ) ,  and is consistent with fibers 
and terminals stained with antiserum to 
UCN or urotensin (8). Interestingly, all 

Table 4. Effect of urocortin (ICV) and d-fenfura- 
mine (administered intraperitoneally) on meal 
bouts and meal size from 0 to 6 hours in nonde- 
prived rats. Meal bouts were arbitrarily defined as 
continuous nose nokes for food nellets with no 
inter-poke interva; greater than 60 s and a mini- 
mum inter-bout interval of 15 min (1 7). Meal size 
was defined as the number of pellets earned per 
bout. For urocoriin, six rats were tested at 3-day 
intervals with a doses of urocoriin in a Latin- 
square design. For d-fenfluramine, six rats were 
tested at 5-day intervals in a Latin-square design. 
Dose of d-fenfluramine is in milligrams per kio- 
gram of body weight. 

Dose Number Mean pellets 
of bouts per bout 

Urocortin 
Vehicle 5.5 2 0.8 29.5 r 5.8 
0.01 pg 6.3 t 0.7 21.0 t 2.0* 
0.1 kg 5.8 t 1.1 18.2 r ? . I * *  
1 .o Pg 2.3 2 0.7** 11.0 i- 3.1** 

d- Fenfluramine 
Vehicle 6.2 i 0.5 33.5 ? 4.7 
0.75 mg/kg 6>5 2 0 . 7  25.8 t 5.8 
1.5 mg/kg 5.0 r 0.3 16.3 2 0.8* 
3.0 mg/kg 1.7 t 0.8** 9.8 2 3.7** 

-P < 0.05; -'P < 0.01, paired t test. 

these brain regions have been implicated in 
the control of food consumption and diges- 
tive functions (1 9). 

Finally, UCN has a high affinity for the 
CRF binding protein (8); thus, a particular 
combination of differential binding protein- 
CRF, receotor distribution 120) could ex- , , 

plain the selective functional effects. For 
example, there is some evidence that the 
CRF binding protein and the CRF, receptor 
are more localized corticallv than subcorti- 
cally, which would decrease the effective 
concentration of UCN at sites where CRF, 
receptors are localized. Thus, in subcortical 
regions where CRF, receptors are primarily 
localized, the binding protein is less abun- 
dant and these subcortical CRF, sites inay 
mediate the anorexic effects of UCN. 

The involvement of an endogenous li- 
gand for CRF receptors in anorexia was also 
suggested by the effects of the CRF antag- 
onist a-helical CRF(9-41) in reversing the 
attenuation of food' consumption in&ced 
bv stress and in enhancing the increase of " 

food consumption induced by food depriva- 
tion or central administration of neuropep- 
tide Y, a potent orexigenic agent (6). Be- 
cause a-helical CRF(9-41) blocks the ef- 
fects of UCN, CRF, urotensin, and sauvag- 
ine on both CRF, and CRF, receptors in 
vitro (8,  10, 1 l ) ,  definitive selective antag- 
onist effects are still unavailable. However, 
these data do suggest that the role of UCN 
in the behavioral responses previously at- 
tributed to CRF mav be ultimatelv assessed 
pharmacologically i i t h  selective CRF an- 
tagonists (3) or in mice having null muta- 
tions for specific receptors and ligands. The 
selective functional effects on food intake of 
this mammalian peptide member of the CRF 
family opens up opportunities for the explo- 
ration of the role of stress and the CRF 
systems in appetite regulation. 
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1.0 yg of UCN, n = 8) had 30-min access to water 
(days 1 through 6, 8, and 10) or saccharin souton 
(days 7 and 9) d a y  for the duratlon of an I 1  -day 
mult~ple-palring test conditlon~ng procedure. UCN 
was adminstered ICV on days 7 and 9 mmediatey 
after access to the saccharin. On day 11, a rats 
chose between two choces (water or saccharin). A 
sgnificant taste aversion was observed only at 1.0 
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The Mental Representation of Hand Movements 
After Parietal Cortex Damage 

Angela Sirigu,* Jean-Rene Duhamel, Laurent Cohen, 
Bernard Pillon, Bruno Dubois, Yves Agid 

Recent neuroimagery findings showed that the patterns of cerebral activation durlng the 
mental rehearsal of a motor act are similar to those produced by its actual execution. This 
concurs with the notion that part of the distributed neural activity taklng place during 
movement involves internal simulations, but it is not yet clear what specific contribution 
the different brain areas involved bring to this process. Here, patlents with lesions 
restricted to the parietal cortex were found to be impaired selectively at predicting, 
through mental imagery, the time necessary to perform differenhated finger movements 
and visually guided pointing gestures, in comparison to normal individuals and to a 
patient with damage to the primary motor area. These results suggest that the parletal 
cortex IS important for the ability to generate mental movement representat~ons. 

p . ,  . 
redlctlon 1s essential to many aspects of 

lnotor behavior, from postural compensa- 
tion to the tracking of moving objects and 
the planning of a complex trajectory. The 
capacity of the central nervous system to 
simulate and anticipate the behavior of the 
motor apparatus is a central issue not only 
in experimental and colnputational studies 
of motor control ( I ) ,  but also in the study of 
mental processes. Hiunans can use this ca- 
pacity to improve a motor skill or induce 
sensorimotor plasticity through mental re- 
hearsal (2).  Decety and his colleagues have 
shown that lnotor imagery can be used to 
predict the time needed to complete a 
movement, and that the mental reenact- 
ment of an effortf~ul exercise causes the 

A. Sirgu, B. P~llon, B. Dubos, Y. Ag~d, INSERM U-289, 
47 Boulevard de 'HBptal, 75013 Paris, France. 

same vegetative changes as its actual per- 
formance (3). Studies of cerebral metabolic 
activity have demonstrated that most of the 
regions that are active during overt move- 
ment execution such as the parietal and 
premotor cortices, the basal ganglia, and 
the cerebellum are active during mental 
simulation as well (4). 

These results suggest that lnotor impair- 
ments caused by a cerebral lesion might also 
affect mentally simulated actions. We re- 
ported a case of a patient with motor cortex 
damage where the simulation of a move- 
ment with the affected limb produced a 
sensation of mental drag and matched that 
limb's reduced motor efficiency (5). Parallel 
impairments in iniagined and executed 
movements were also observed in patients 
with basal ganglia dysfiunction due to Par- 
kinson's disease (6). This observation sug- 

J:R. Duhamel, Laborato~re de Physologe de a Percep- gests that the excitatory output produced in 
tion et de I'Acton, CNRS-College de France, 15, rue de the cortico-striatal pathways during motor 'Ecoe de Medecne. 75006 Pars. France. 
L. Cohen, HBp~tal de la Salpetr~Bre, 47 Boulevard de imagery closely mimics what occurs during 
'HBp~tal, 75013 Paris, France. movement execution, and that it is acces- 
-To whom correspondence should be addressed. sible to conscious evaluation. Furthermore, 
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