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Predicting the Occurrence of Endangered 
Species in Fragmented Landscapes 
Niklas Wahlberg," Atte Moilanen, llkka Hanski 

Reliable prediction of metapopulation persistence in fragmented landscapes has be- 
come a priority in conservation biology, with ongoing destruction of habitat confining 
increasing numbers of species into networks of small patches. A spatially realistic 
metapopulation model, which includes the first-order effects of patch area and isolation 
on extinction and colonization, has been tested. The distribution of an endangered 
butterfly was successfully predicted on the basis of parameter values estimated for a 
well-studied congeneric species. This modeling approach can be a practical tool in the 
study and conservation of species in highly fragmented landscapes. 

Habi ta t  destruction around the world ( I )  
often leaves the remaining landscape se- 
verely fragmented ( 2 ) ,  a condition that ag- 
gravates the threat to the survival of species 
that originally occupied more extensive and 
continuous habitats (3). Some species may 
nonetheless persist as metapopulations (4), 
assemblages of local populations inhabiting 
networks of habitat patches, even in highly 
fragmented landscapes. The quantitative 
understanding of metapopulation dynamics 
has become critical for the successful man- 
agement and conservation of scores of en- " 
dangered species (5). 

Recently, Hanski developed a spatially 
realistic metapopulation model, called the 
incidence function model (6). which strives ~ ,, 

to combine generality and realism in a 
framework that allows Darameter estimation 
and quantitative prediction for real meta- 
populations (6, 7). In the incidence function 
model (8), the probability of local extinction 
is determined bv the size of the res~ective 
habitat patch, which assumes a posiiive re- 
lation between expected population size and 
patch area. Such a relation is commonly 
observed for animals (9). The probability of 
colonization of an empty patch is deter- 
mined by its isolation from the occupied 
patches and by the sizes of these patches. 
Our recent studies of the Glanville fritillary 
butterflv (Melitaea cinxia) demonstrated that , . 
the effects of patch area and isolation dom- 
inate in the dynamics of its metapopulations, 
with factors 'that describe the quality of the 
habitat patches and the surrounding land- 
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scape exerting only relatively minor effects 
(7, 10). Other studies have reached similar 
conclusions (1 1 ), although often some at- 
tribute of patch quality has also been found 
to have a significant effect (1 2). 

The Darameters of the incidence function 
model can be estimated from a snapshot of 
patch occupancies (8). In making these es- 
timates, we also assumed that the metapopu- 
lation from which the snapshot was taken 
was not far away from a stochastic steady 
state. This may be a problematic assumption 
for endangered species, many of which may 
be declining after recent habitat destruction. 
Often it is also difficult to collect sufficient 
data on rare species to estimate the parame- 
ters of any model. In this study, we used 
extensive data on metapopulation dynamics 
to test whether Darameter values estimated 
for an unendangered butterfly species can be 
used as surrogates when data are unknown - 
for a rare and endangered congeneric species. 

The false heath fritillary butterfly, Melitaea 
diamina, is an endangered species in Finland 
(13) and within much of its range in'Europe 
(14). It occurs on moist meadows with the 
larval host plant Valeriana sambucifolia. In 
spring 1995, we surveyed its only well-known 
metapopulation in Finland for all suitable 
habitat patches (15). Within an area of 600 
km2 we located 94 suitable patches, of which 
35 were found to be occupied (16). It is 
unlikely that therc are any other populations 
outside the study area within several hundred 
kilometers (17). Melitaea diamina is ecologi- 
cally similar to the congeneric M. cinxia (1 8), 
which we have studied intensively in a large 
network of -1600 habitat patches (7, 19). 
We have estimated the parameters of the 
incidence function model for M, cinxia (7), 
and we now use the published parameter val- 
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Table 1. Estimated parameter values (with standard errors) and simulation simulation runs as the proportions of time each patch was occupied during 
results. The parameters were estimated for four butterfly species (8, 21). For iteration. The product ML measures the correspondence between predicted 
each parameter set 20 replicate simulation runs were performed (20). The ML and empirically observed patch occupancies (Fig. 1); smaller values indicate 
value reported here IS the log-i~kel~hood error during model ~terat~on, whlch better f~t. Quantities P and PA are the fractions of patches and the pooled 
can be calculated from Eq. 4 in (8) by using J, values determined from the patch area occupled durlng the slmulatlon, respectively. 

Parameter values (SE) Fraction of habitat occupied 

Species (mean 2 SD) 

Melitaea diamina 0.884 (0.257) 0.182 (0.105) 0.014 3.62 66.8 2 6.4 0.36 i 0.05 0.44 2 0.07 
Melitaea cinxia 0.952 (0.271) 0.158 (0.166) 0.01 0 3.97 65.3 i 8.1 0.40 2 0.02 0.50 i 0.04 
Scolitantides orjon 0.964 (0.482) 0.239 (0.323) 0.009 5.04 65.4 i 9.3 0.33 ? 0.04 0.45 i 0.08 
Hesperia comma 0.975 (0.206) 0.830 (0.400) 0,009 9.65 85.8 2 11.9 0.19 i 0.02 0.32 i 0.06 

ues for M , cinxia to predict the dynamics of M . 
diamina in the patch network surveyed in 
1995 (20). 

The model predicted very successfully the 
pattern of patch occupancy in M. diamina 
(Fig. 1, A and B). The observed fraction of 
occupied patches was 0.3,7, whereas the pre- 
dicted value was 0.40 + 0.04 (mean + 2 SD). 
The successful prediction is essentially due to 
three clusters of ~a tches ,  which had high in- - 
cidences in the model prediction and a high 
rate of occupancy in reality, We ran the mod- 
el with three other sets of parameter values 
estimated for three species of butterflies (21) 
(Table I ) ,  Parameter values for Scolitantides 
orion slightly underestimated the distribution 
of M. diamina in its patch network (Fig. l C ) ,  
whereas parameter values estimated for Hes- 
peria comma more clearly underestimated 
patch occupancy in M.  diaminu (Fig. ID), 
possibly because these species appear to be 
poorer colonizers than the two Melitaea spe- 
cies (as suggested by the larger values of y in 
Table I ) .  Thus, although parameter values of 
a congeneric species correctly predicted hab- 
itat occupancy in M.  diamina, parameters of 
unrelated species may not do so. Although 
many butterfly species have been studied in- 
tensively in recent years (22), these studies 
have not covered sufficiently large patch net- 
works to allow us to estimate the parameters 
of the incidence function model for species 
other than those in Table 1. 

These results have three important impli- 
cations. First, the results support the notion 
that metapopulation dynamics in highly frag- 
mented landscapes are dominated by the ef- 
fects of oatch area and isolation on local 
extinctions and colonizations (7, 23). Sec- 
ond, the successful application of the model 
implies, although it does not suffice to prove, 
that the metapopulation of the endangered 
butterfly M. diamina is close to a stochastic 
steady state, apparently because of fast popu- 
lation turnover rate in relation to the rate of 
environmental change (24). And third, the 
results demonstratethe potential value of us- 
ing information for a more abundant and 
widespread congeneric species to estimate the 

Fig. 1. Patterns of patch oc- 
cupancy In the M, diamina 
metapopulation. (A) A map of 
the observed patch occupan- 
cy of M. diamina in the Tam- 
pere region of Finland. Fllled 
and empty circles indicate oc- 
cupled and empty patches, 0 0 

respectively, The size of the 
circle is proportional to the 
area of the patch. (B) The pre- oo 
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Fig. 2. Consequences of 
habitat destruction in the M. 
diamina metapopulation. (A) 
Consequence of the de- 
struction of 47 patches 
around the edges of the net- 
work described in Flg. 1A 
(55% of the total area of 0.59 
kmVestroyed). Each de- 
stroyed patch is represented 
by an x. The shading of the 
patches IS as in Fig, 16. (B) 
The results of 10 replicate 
simulations for the patch net- 
work in (A). In each simula- 
tion the incidence function 
model was iterated for 400 
time units starting from the 
observed patch occupancy 
pattern shown in Fig. 1A. (C) 
Same as (A), except that 15 
patches were destroyed in 
areas Aritical to the persis- 
tence of the M. diamina met- 
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apopulation (44% of the total Distance (km) 
area destroyed). (D) Same as 
(B), but for the network described in (C). 

Time units 
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