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A Requirement for Local Protein Synthesis
in Neurotrophin-Induced Hippocampal
Synaptic Plasticity

Hyejin Kang and Erin M. Schuman*

Two neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3
(NT-3), are able to produce a long-lasting enhancement of synaptic transmission in the
hippocampus. Unlike other forms of plasticity, neurotrophin-induced plasticity exhibited
an immediate requirement for protein synthesis. Plasticity in rat hippocampal slices in
which the synaptic neuropil was isolated from the principal cell bodies also required early
protein synthesis. Thus, the neurotrophins may stimulate the synthesis of proteins in
either axonal or dendritic compartments, allowing synapses to exert local control over
the complement of proteins expressed at individual synaptic sites.

The cellular changes that underlie both syn-
aptic and behavioral plasticity are usually clas-
sified as either (i) short term, because they are
based on the modification of preexisting pro-
teins, or (ii) long term, because they require
protein synthesis. For example, studies of syn-
aptic plasticity in the hippocampus and in
Aplysia have shown that, whereas the short-
term phase (O to 1 hour) of synaptic enhance-
ment is not blocked by inhibitors of protein
translation, the long-term phase (>1 hour) is
[(1), but see (2)]. These cellular studies are
paralleled by many studies of behavioral plas-
ticity that also indicate that short-term mem-
ories are insensitive to inhibitors of protein
synthesis (3). The neurotrophic factors BDNF
and NT-3 can enhance synaptic efficacy (4),
and we have now examined the temporal
sensitivity of the neurotrophin-induced syn-
aptic enhancement to inhibitors of protein
synthesis.

Synaptic transmission was examined at
the Schaffer collateral-CA1 pyramidal neu-
ron synapse in adult rat hippocampal slices
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with the use of conventional extracellular
recording techniques (5). In control exper-
iments, extracellular application of BDNF
(50 ng/ml) or NT-3 (50 ng/ml) elicited a
robust enhancement of synaptic transmis-
sion (Fig. 1, A and B) (4) [mean percent of
baseline: BDNF, 221.4 * 16.4 (mean
SEM, n = 7), P < 0.005; NT-3, 231.1
19.5 (n = 8), P < 0.005]. Pretreatment
with one of two protein synthesis inhibitors
(6), either anisomycin (40 uM) or cyclo-
heximide (40 wM), markedly attenuated
the synaptic enhancement induced by ei-
ther neurotrophin (Fig. 1, C through F and
H) [mean percent of baseline: BDNF plus
anisomycin, 134.2 = 8.4 (n = 9), P < 0.05;
BDNF plus cycloheximide, 138.7 = 13.2
(n =17), P <0.05; NT-3 plus anisomycin,
130.1 = 7.6 (n = 9), P < 0.05; NT-3 plus
cycloheximide, 118.5 *= 14.0 (n = 7), not
significant (NS)]. In contrast to previous
studies of synaptic plasticity, the sensitivity
to inhibitors of protein synthesis was evi-
dent within minutes of neurotrophin appli-
cation (Fig. 1, C through F). Similar pre-
treatment of hippocampal slices with an
inhibitor of prokaryotic protein synthesis,
chloramphenicol (80 uM), did not signifi-
cantly reduce the synaptic enhancement

I+ 1+



induced by either BDNF or NT-3 (Fig. 1H)
[mean percent of baseline: BDNF plus
chloramphenicol, 216.2 = 6.7 (n = 5), P <
0.005; NT-3 plus chloramphenicol, 250.8 =
32.6 (n = 5), P < 0.005].

This early requirement for protein syn-
thesis is temporally inconsistent with the
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time necessary for somatic synthesis and
transport of proteins to synaptic sites in
pyramidal neurons (7). A potential source
of protein synthesis closer to synaptic sites
has been described in hippocampal pyrami-
dal cells (8). To investigate whether the
early requirement for protein synthesis re-
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Fig. 1. Attenuation of neurotrophin-induced synaptic plasticity by inhibitors of protein synthesis. (A and
B) Ensemble averages for control experiments in which application of BDNF (A) or NT-3 (B) (50 ng/ml)
induced a rapid and persistent enhancement of synaptic strength. Mean field excitatory postsynaptic
potential (EPSP) slope was 0.11 = 0.01 mV/ms (mean = SEM) before and 0.24 + 0.02 mV/ms after
BDNF, and 0.12 = 0.01 mV/ms before and 0.27 = 0.02 mV/ms after NT-3. Two representative field
EPSPs and their superimposition are shown for the time points (arrows labeled 1 and 2) indicated. (C
and D) Pretreatment of hippocampal slices with anisomycin attenuated the synaptic enhancement
induced by BDNF (C) or NT-3 (D). Mean field EPSP slope was 0.13 + 0.01 mV/ms before and 0.17 =+
0.02 mV/ms after BDNF, and 0.12 + 0.01 mV/ms before and 0.16 * 0.01 mV/ms after NT-3. (E and F)
Pretreatment of hippocampal slices with cycloheximide attenuated the synaptic enhancement induced
by BDNF (E) or NT-3 (F). Mean field EPSP slope was 0.13 + 0.01 mV/ms before and 0.18 = 0.02 mV/ms
after BDNF, and 0.14 = 0.01 mV/ms before and 0.16 = 0.03 mV/ms after NT-3. (G) Control experiment
demonstrating that anisomycin had no effect on basal synaptic strength. Similar results were obtained

with cycloheximide. Mean field EPSP slope was 0.12 = 0.01 mV/ms before and 0.13 = 0.02 mV/ms

after anisomycin, and 0.18 = 0.01 mV/ms before and 0.20 * 0.02 mV/ms after cycloheximide.

Calibration bars [for (A) through (G)], 1 mV and 20 ms. (H) Summary of the percent enhancement of
mean field EPSP slopes shown in (A) through (F) for control, anisomycin (Aniso), and cycloheximide

(Cyclo), as well as for chloramphenicol (Chlor). *P < 0.05 versus control group.
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sulted from synthesis independent of somat-
ic protein translation machinery, we isolat-
ed the synaptic regions from either CA3
(Fig. 2, A and B) or CA1 (Fig. 3, A and B)
cell bodies with the use of a microlesion (9).
Previous studies have indicated that synap-
tic transmission and short-term plasticity
can be recorded in similarly lesioned hip-
pocampal slices (10). To control for general
damage associated with the lesion, we con-
ducted experiments in which a sham lesion
was made in the dentate gyrus region of the
hippocampal slice (9). The extracellular ap-
plication of BDNF or NT-3 potentiated
synaptic transmission in the sham-lesioned
slices to a similar extent to that observed in
unlesioned slices (Fig. 2, C and D) [mean
percent of baseline: BDNF, 237.6 = 35.5
(n =17), P <0.005 NT-3, 2163 = 27.0
(n=6), P <0.01].

To address the possibility that the protein
synthesis inhibitor-sensitive compartment re-
sides in the presynaptic cell bodies, we isolat-
ed the CA3 cell bodies from the stratum
radiatum (Fig. 2, A and B). In CA3-isolated
slices, both neurotrophins continued to en-
hance synaptic strength (Fig. 2, C and D)
[mean percent of baseline: BDNF, 230.7 *+
262 (n = 7), P < 0.001; NT-3, 211.33 =
22.3 (n = 6), P <0.005]. In CA3-isolated
slices pretreated with anisomycin, however,
the enhancement produced by BDNF or
NT-3 was markedly reduced (Fig. 2, C and D)
[mean percent of baseline: BDNF plus aniso-
mycin, 109.5 = 8.3 (n = 5), NS; NT-3 plus
anisomycin, 115.9 * 15.7 (n = 5), NS]. This
continued sensitivity to a protein synthesis
inhibitor in the absence of CA3 somata indi-
cated that the relevant protein translation
machinery did not reside in the presynaptic
cell bodies.

We next addressed the potential contri-
bution of postsynaptic somatic protein syn-
thesis by dissociating CA1 somata from the
synaptic region in the stratum radiatum. The
CA1 lesion was placed just beyond the api-
cal boundary of the pyramidal cell layer (Fig.
3, A and B). We confirmed the complete
dissociation of CA1 cell bodies from their
dendrites by cresyl violet staining (Fig. 3B)
and by placing a recording electrode in the
cell body region and attempting to record a
synaptic response to stimulation of the
Schaffer collaterals. In no such instance did
we detect any synaptic response. The re-
maining isolated neuronal cell bodies present
in the synaptic neuropil were likely interneu-
rons, which have been shown by immuno-
cytochemistry and in situ hybridization to
contain glutamic acid decarboxylase (11).

Excitatory synaptic responses recorded in
slices with isolated CA1 somata still exhib-
ited significant potentiation on exposure to
either BDNF or NT-3 (Fig. 3, C and D)
[mean percent of baseline: BDNF, 182.1 =
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12.7 (n = 8), P < 0.005; NT-3, 182.3 = 9.5
(n = 6), P < 0.005]. The enhancement
observed in these slices, however, was slight-
ly, but significantly, smaller than that ob-
served in sham-lesioned slices (P < 0.05).
Preexposure of the CAl-isolated slices to
anisomycin again attenuated the enhance-

Fig. 2. Requirement of protein synthesis for neu-
rotrophin-induced enhancement at synapses iso-
lated from the presynaptic pyramidal cell somata.
(A) Schematic representation of a hippocampal
slice showing the placement of a microlesion to
isolate CA3 cell bodies from their axons and the
CA1 dendritic area, where electrophysiological re-
cordings were made. DG, dentate gyrus. (B) Rep-
resentative cresyl violet-stained hippocampal
slice after the isolation of the CA3 cell somata from
the synaptic region. Arrowheads indicate the site
of the lesion. Scale bar, 550 pm. (C and D) Filled
circles indicate the control enhancement obtained
in sham-lesioned slices after the application of
BDNF (C) or NT-3 (D). Mean field EPSP slope was
0.12 * 0.01 mV/ms (mean *= SEM) before and
0.28 + 0.04 mV/ms after BDNF, and 0.14 = 0.01
mV/ms before and 0.29 *+ 0.03 mV/ms after NT-
3. Open circles indicate the enhancement ob-
tained in CA3 somata-isolated slices. BDNF (C)
and NT-3 (D) enhanced synaptic transmission to a
similar extent as that observed in sham-lesioned
slices. Mean field EPSP slope was 0.11 = 0.01
mV/ms before and 0.25 = 0.03 mV/ms after
BDNF, and 0.13 = 0.01 mV/ms before and
0.28 *+ 0.02 mV/ms after NT-3. Open triangles
show that pretreatment of the slices with aniso-

mycin prevented the neurotrophin-induced plasticity at CA3 somata-isolated
synapses. Mean field EPSP slope was 0.13 = 0.02 mV/ms before and
0.14 = 0.08 mV/ms after BDNF, and 0.16 = 0.01 mV/ms before and 0.18 *

Fig. 3. Requirement of protein synthesis for neu-
rotrophin-induced enhancement at synapses iso-
lated from the postsynaptic pyramidal cell soma-
ta. (A) Schematic representation of a hippocampal
slice showing the placement of a microlesion to
isolate CA1 cell bodies from their dendrites, where
electrophysiological recordings were made. (B)
Representative cresyl violet—stained hippocampal
slice after the isolation of the CA1 cell somata from
the synaptic region. Arrowheads indicate the site
of the lesion. Scale bar, 550 um. (C and D) Filled
circles indicate the control enhancement obtained
in sham-lesioned slices after the application of
BDNF (C) or NT-3 (D). Mean field EPSP slope was
0.11 * 0.01 mV/ms (mean *= SEM) before and
0.26 = 0.02 mV/ms after BDNF, and 0.13 = 0.01
mV/ms before and 0.29 = 0.01 mV/ms after NT-
3. Open circles indicate the enhancement ob-
tained in CA1 somata-isolated slices. BDNF (C)
and NT-3 (D) enhanced synaptic transmission at
synapses isolated from the postsynaptic cell bod-
ies, although the magnitude of enhancement was
slightly less than that observed in sham-lesioned
slices. Mean field EPSP slope was 0.10 *+ 0.01
mV/ms before and 0.17 = 0.02 mV/ms after
BDNF, and 0.10 = 0.02 mV/ms before and

0.18 = 0.083 mV/ms after NT-3. Open triangles show that pretreatment of the
slices with anisomycin prevented the neurotrophin-induced plasticity at CA1
somata-isolated synapses. Mean field EPSP slope was 0.09 = 0.01 mV/ms

ment induced by either BDNF or NT-3 (Fig.
3, C and D) [mean percent of baseline:
BDNF plus anisomycin, 119.7 = 8.0 (n = 6),
NS; NT-3 plus anisomycin, 119.6 * 9.5
(n = 6), NS].

The results of the CA3 and CALl isola-

tion experiments indicate that neurotro-
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phin-induced synaptic potentiation re-
quired protein synthesis at sites distinct
from the pyramidal neuron cell bodies (12).
To rule out the possibility that the site of
protein synthesis changed systematically as a
result of the lesioned area, we simultaneously
isolated both pre- and postsynaptic cell bodies
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and 0.12 = 0.01 mV/ms after NT-3. Superimposed representative EPSPs
were recorded 5 min before and 3 hours after the application of neurotrophin.
Calibration bars, 1 mV and 20 ms.



(Fig. 4A). In such slices, application of BDNF
or NT-3 enhanced synaptic strength (Fig. 4, B
and C) [mean percent of baseline: BDNF,
193.5 = 6.7 (n = 8), P < 0.001; NT-3,
192.8 = 12.4 (n = 6), P < 0.001]. Moreover,
pretreatment of slices with anisomycin pre-
vented the neurotrophin-induced enhance-
ment (Fig. 4, B and C) [mean percent of
baseline: BDNF plus anisomycin, 122.0 = 7.0
(n = 6), NS; NT-3 plus anisomycin, 116.4 *
9.1 (n = 5), NS]. The persistence of aniso-
mycin sensitivity in slices isolated from both
pre- and postsynaptic cell bodies indicates
that the neurotrophins made use of protein
synthesis machinery in the synaptic neuropil
of the hippocampal slice.

The presumptive local site of protein syn-
thesis could reside in axons or dendrites of
pyramidal neurons, or in neighboring inter-
neurons or glia. Although hippocampal inter-
neurons may express TRK receptors (13), the
synaptic enhancement induced by the neuro-
trophins does not require inhibitory transmis-
sion mediated by y-aminobutyric acid type A
(GABA ) receptors (14). Thus, proteins syn-
thesized in interneurons would presumably
have to influence excitatory synaptic trans-

Fig. 4. Requirement of protein syn-
thesis for neurotrophin-induced en- A
hancement at -synapses isolated

from both pre- and postsynaptic

pyramidal cell somata. (A) Sche-

matic representation of a hip-

pocampal slice showing the place-

ment of two microlesions to isolate

the pre- and postsynaptic cell bod- B
ies from the synaptic region of the
slice, where electrophysiological re-
cordings were made. (B and C)
Filled circles indicate enhancement
of synaptic transmission by BDNF
(B) or NT-3 (C) at synapses isolated
from both pre- and postsynaptic
cell bodies. Mean field EPSP slope
was 0.09 = 0.01 mV/ms (mean =
SEM) before and 0.17 = 0.01 mV/
ms after BDNF, and 0.11 = 0.01
mV/ms before and 0.19 = 0.01
mV/ms after NT-3. Open circles

mission by non-GABA , receptor-mediated
diffusible signaling. Likewise, the potential
involvement of glial protein synthesis would
also require a diffusible signal. Astrocytes in
the CALl region, however, do not appear to
express full-length TRKB or TRKC receptors
(15), making glial participation unlikely.
These data are most consistent with the hy-
pothesis that the neurotrophins stimulate lo-
cal protein synthesis within the pyramidal
neurons themselves. The mRNAs encoding
both TRKB and TRKC have been detected in
both the presynaptic CA3 and the postsynap-
tic CAl neurons (16). Although some
mRNA species have been detected in axons
(17), no protein synthesis has been detected
in hippocampal axons (18). Thus, the most
likely site of neurotrophin-induced protein
synthesis is the dendrites of CAl pyramidal
neurons. Ultrastructural, in situ hybridization,
and single-cell polymerase chain reaction
techniques have revealed that both polyribo-
somes (8) and mRNAs (19) are present in
CA1 dendrites, often associated with individ-
ual postsynaptic spines. Moreover, protein
synthesis has been detected in synaptosomes
(20), isolated axonal and dendritic fractions

show that the neurotrophin-in-
duced plasticity in synaptically iso-
lated slices required protein synthe-
sis. Mean field EPSP slope was
0.183 = 0.01 mV/ms before and
0.14 = 0.01 mV/ms after BDNF,
and 0.11 £ 0.01 mV/ms before and
0.12 = 0.01 mV/ms after NT-3. Su-
perimposed representative EPSP
traces were recorded from control
and anisomycin-treated slices 5
min before and 3 hours after the
application of neurotrophin. Cali-
bration bars, 1 mV and 20 ms.
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(18), and hippocampal slices exposed to syn-
aptic stimulation and carbachol (7) or N-
methyl-D-aspartate or nitric oxide (21).

Application of anisomycin had no detect-
able effect on basal synaptic transmission (Fig.
1G) or short-term synaptic plasticity (22).
Basal levels of protein synthesis in hippocam-
pal dendrites are low and completely blocked
by chloramphenicol, but are not affected by
anisomycin or cycloheximide (7). Moreover,
anisomycin did not affect the abundance of
the TRKB protein or its phosphorylation in-
duced by BDNF (23). These observations ar-
gue against the interpretation that anisomy-
cin reduces the amounts of locally synthesized
proteins that are necessary for signal transduc-
tion by BDNF or NT-3.

Qur data suggest that BDNF and NT-3
stimulate the local synthesis of proteins that
are required for the induction of synaptic en-
hancement (24). In the hippocampus, neuro-
trophins stimulate TRK phosphorylation (25)
and increase intracellular Ca?" concentra-
tions (26); these same signaling events may be
coupled to protein kinase activities (27) to
stimulate protein synthesis. The newly syn-
thesized proteins may act locally to enhance
postsynaptic responsiveness or may communi-
cate with the ptesynaptic terminal to increase
neurotransmitter release (4, 28). During de-
velopmental and adult plasticity, the regulat-
ed release (29) of neurotrophins and conse-
quent stimulation of local protein synthesis
may permit the site-specific modification of
synaptic transmission (4) and structure (30).
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CRINKLY4: A TNFR-Like Receptor Kinase
Involved in Maize Epidermal Differentiation

Philip W. Becraft,” Philip S. Stinard, Donald R. McCarty

The maize crinkly4 (cr4) mutation affects leaf epidermis differentiation such that cell size
and morphology are altered, and surface functions are compromised, allowing graft-like
fusions between organs. In the seed, loss of cr4 inhibits aleurone formation in a pattern
that reflects the normal progression of differentiation over the developing endosperm
surface. The cr4 gene was isolated by transposon tagging and found to encode a putative
receptor kinase. The extracellular domain contains a cysteine-rich region similar to the

ligand binding domain in mammalian tumor n

ecrosis factor receptors (TNFRs) and seven

copies of a previously unknown 39-amino acid repeat. The results suggest a role for cr4

in a differentiation signal.

The surface of plant organs is defined by a
specialized epidermal cell layer. The leaf epi-
dermis has essential functions in develop-
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ment, gas exchange, water retention, and de-
fense against pathogens. In grass seeds, the
endosperm contains an epidermis-like layer
called aleurone, which is an important source
of hydrolytic enzymes required for remobiliza-
tion of stored starch and protein during ger-
mination. The recessive cr4 mutation of maize
affects the differentiation of both epidermis
and aleurone. It was identified in a line con-
taining Mutator transposable elements and
mapped to chromosome 10S ().





