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CD2: An Exception to the immunoglobulin 
Superfamily Concept? 

A central tenet of the immunoglobulin 
superfamily (IgSF) concept is that the evo- 
lutionarv success of IeSF domains derives " 
from their ability to form stable protein 
modules at the cell surface ( 1 ,  2),  and this is 
entirely consistent with the high degree of 
conservation of framework residues in IgSF 
domains revealed by structural studies (3). 
The recent proposal by Daniel F. Wyss et al. 
(4) that some IgSF domains, such as the 
ligand binding domain of the human T 
lymphocyte antigen, CD2, "maintain their 
stable conformation as a result of dvnamic 
interactions between the polypeptide and 
its attached glycan," is incompatible with 
the IgSF concept and therefore warrants 
careful consideration. 

CD2 is an integral membrane glycopro- 
tein that has two extracellular IgSF do- 
mains N-glycosylated at three sites [re- 
viewed in (5)]. The ligand- and antibody- 
binding properties of a soluble form of CD2 
consisting of both IgSF domains are indis- 
tinguishable before and after reduction of 
the N-linked glycans to single N-acetylglu- 
cosamine residues bv endoelvcosidase H 

u ,  

treatment (6). After complete removal of 
the glycans with N-glycanase, the protein 
also binds ligand with wild-type affinity, 
although the binding of some antibodies is 
reduced in accord with the reduction in 
protein solubility observed after complete 
deglycosylation of CD2 (6). These results 
suggest that the N-linked glycans do not 
stabilize the folded conformation of two- 
domain CD2. but mav enhance its overall 
solubility. In contrast, the proteolytic frag- 
ment consisting of domain 1 of CD2, on 
which Wyss et al. base much of their anal- 
ysis, appears to be metastable because N- 
glycanase treatment of this fragment com- 
pletely abrogates ligand and antibody bind- 
ing (4,  7). These differences in the behavior 
of the single- and two-domain forms of CD2 
undermine the biological significance of the 

molecules by recombinant DNA methods 
[see, for example, (8) and (9)]. In the light 
of these discrepancies and technical uncer- 
tainties, it seems inappropriate to conclude 
that CD2 is a clear exception to the IgSF 
concept. 

These observations do not rule out the 
possibility that the domain 1 glycan has some 
other role in CD2 expression and this is 
clearly implied by the mutational data of 
Wyss et al. The problem with the mutational 
approach, however, is that it does not neces- 
sarily distinguish between the potential ef- 
fects of glycosylation on (i) protein folding, 
(ii) post-folding conformational stability, or 
(iii) protein trafficking to or beyond the cell 
surface. In view of the conformational stabil- 
ity of deglycosylated two-domain CD2 (6, 
10) and the unimpaired trafficking of ungly- 
cosylated mutant forms of CD2 to the cell 
surface (4, 7), it would appear that the do- 
main 1 glycan influences the initial folding of 
CD2 rather than determining, as proposed by 
Wyss et al., its post-folding stability. A fluo- 
rescence energy transfer study of peptides 
used as model folding intermediates (1 1), 
which suggests that N-linked glycans alter 
the conformational space available to p-turn 
glycopeptides that are analogous to the gly- 
cosylated DE loop of CD2 domain 1, is con- 
sistent with this possibility. 
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Response: In our report, we stated that the 
functional form of human CD2 (hCD2) is 
maintained by the stabilizing effect of its 
N-linked glycan in domain 1. Earlier we had 
observed that (i) whereas soluble nonglyco- 
sylated human CD2 domain 1 (hsCD2dl) 
expressed in Escherichia coli was not func- 
tional, Chinese hamster ovary cell derived 
glycosylated hsCD2dl was fully active, and 
(ii) complete removal of the single N-gly- 
can in domain 1 of hCD2, either by N- 
glycanase treatment of hsCD2dl or by mu- 
tation of the Asn65-Xxx-Thr67 sequence of 
hCD2, completely abrogated CD58 and an- 
ti-CD2 monoclonal antibody binding (1, 
2). Our recent structural studies on glyco- 
sylated hsCD2dl (3, 4) revealed that this 
N-glycan is opposite to the CD58 binding 
site in hCD2 and is not involved in CD58 
recognition. To determine why this N-gly- 
can is nevertheless critical for hCD2 adhe- 
sion function, we sr~tdied both enzymatical- 
ly treated hsCD2dl and a series of full- 
length hCD2 mutants (4). From these stud- 
ies we concluded that the N-glycan 
crucially stabilizes the folded protein struc- 
ture, and showed that the first N-acetylglu- 
cosamine residue (GlcNAc-1) is sufficient 
to keep the glycoprotein folded (4). Several 
recent studies on glycoproteins have shown 
that carbohydrates globally stabilize the 
polypeptide fold (5-1 1) and in two cases, an 
increase in the stability of about 1.2 kcall 
mol was measured (6,  8). In two examples, 
this stabilizing f~~nct ion  was achieved by a 
single sugar unit like in hCD2 (5, 6). How- 
ever. the mechanism of this stabilization is 
not clear yet. On  the basis of our mutations, 
we have not been able to identify a partic- 
ular stabilizing interaction between glycan 
and protein in the folded state (4).  On  the 
other hand, the presence of the bulky, con- 
formationally restricted GlcNAc-1 ring is 
likely to lower the entropy of the unfolded 
state favoring the folded form. The margin- 
al stability of hCD2 has been shown to be 
due to the unfavorable clustering of five 
lysines centered around Lys-61 (4). Com- 
pared to hCD2, rat CD2-which does not 

require a glycan for maintenance of its sta- 
ble fold-contains a glutamic acid at the 
corresponding position of Lys-61. A non- 
glycosylated hCD2 mutant containing a 
K61E mutation is stable and shows full 
CD58 binding activity. This suggests that in 
this hCD2 mutant, Glu-61 removes the 
unfavorable clustering of positive charges 
and forms a stabilizing salt bridge with Lys- 
69, eliminating the need for a stabilizing 
glycan (4). 

Davis and van der Merwe have done 
independent work on CD58 and anti-CD2 
monoclonal antibody binding of enzymati- 
cally treated hsCD2dld2 using surface plas- 
mon resonance (SPR) analysis (1 2). 

First, they state that the N-linked glycans 
do not stabilize the folded conformation of 
hsCD2d1, but may enhance its overall solu- 
bility. However, it is unlikely that the stabi- 
lizing effect demonstrated for hsCD2dl 
should not contribute to the stability of the 
two-domain fragment, in particular because 
similar stabilization effects of glycans have 
been found in a number of other glycopro- 
teins (5-1 1 ). Consistent with our view, they 
observed a marked reduction of binding ac- 
tivity for several anti-CD2 monoclonal anti- 
bodies compared to the results of endogly- 
cosidase H treatment, when in addition, 
the GlcNAc-1 of the three N-glycans of 
hsCD2dld2 were removed with N-gly- 
canase treatment (12). Furthermore, with 
N-glycanase treatment, hsCD2dld2 needs 
to be used in their SPR analysis of CD58 
binding activity immediately to avoid pro- 
tein aggregation. Exposure of hydrophobic 
groups on removal of the three GlcNAc-1 
of hsCD2dld2 per se is unlikely in this 
case, given the nature of the hsCD2dld2 
surface defined by the crystal structure in 
the vicinity of the three N-glycans (13). 
The observed aggregation is more likely a 
consequence of partial unfolding, a com- 
mon phenomenon, as hydrophobic protein 
core interiors will be exposed. Although 
N-glycanase treated hsCD2dld2 binds 
CD58 with wild-type affinity, this does 
not necessarily mean that it is equally 
stable as wild-type hCD2. The fact that 
N-glycanase-treated hsCD2dld2 binds sev- 
eral conformationally-sensitive antibodies to 
a much lower degree than wild-type hCD2 
and its high tendency to aggregate clearly 
show that this molecule is no longer fully 
native-like, although it may still be able to 
provide an intact CD58 binding site for 
some amount of time. 

Second, Davis and van der Merwe sug- 

gest that the N-glycan, within the adhesion 
domain of hCD2, influences the initial 
folding of hCD2 rather than determining its 
post-folding stability. However, the CD2 
copy number of nonglycosylated hCD2 mu- 
tants on the cell surface is around 50% or 
greater of wild-type hCD2. Misfolded pro- 
teins are usually recognized and degraded by 
the quality control system in the endoplas- 
mic reticulum, and hence are expressed at 
very low levels relative to wild-type pro- 
teins (14). Nevertheless, besides its role in 
post-folding stability, the N-glycan may also 
play an important role in the conformation- 
a1 maturation of hCD2. 
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