
passageways of these specimens. Addition- 
allv. because values for cross-sectional areas , , 
of the theropod nasal passages lie on or 
below the reptilian allometric regression 
(Fig. 3), respiratory turbinates were proba- 
bly also absent in life. Similarly, CAT scans 
from a particularly well-preserved skull of 
the ornithischian dinosaur Hypacrosaurus 
(Ornithopoda: Hadrosauridae) also show no 
evidence of the presence of respiratory tur- 
binates (Fig. 2F). Nasal cross sectional area 
in Hvbacrosaurus is also coincident with the 

,A 

reptilian allometric regression.(Fig. 3). 
The proximity of the nostrils to the cho- 

anae (internal nares) in the maniraotoran 
theropod Dromaeosaurus (Dromaeosauri- 
dae) (12) and probably in Deinonychus 
(Dromaeosauridae) (13) as well is reminis- 
cent of nasal cavity proportions in a variety 
of modern lizards (Varanidae, for example) 
(Fig. 5)  (14). As in extant lizards, the ab- 
breviated nasal passage associated with such 
a direct ~ a t h  of airflow into the oral cavitv 
of these dinosaurs almost certainly preclud- 
ed sufficient space in the nasal cavity to 
have accommodated respiratory turbinates. 

Together the data indicate that a variety 
of Cretaceous therowod dinosaurs. and at 
least one genus of ornithischian dinosaurs, 
possessed crocodile- or lizardlike, relatively 
constricted nasal passages, devoid of suffi- 
cient cross-sectional area to have accom- 
modated res~iratorv turbinates and endo- 
thermic-lung ventilation rates. These obser- 
vations do not necessarily either preclude or 
support the possibility that some or all of 
the taxa investigated here maintained rou- 
tine metabolic rates somewhat greater than - 
those of extant ectotherms. 
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Enforcing Coherent Evolution in 
Dissipative Quantum Dynamics 

J. I. Cirac, T. Pellizzari, P. Zoller 

The major obstacle to the preparation and manipulation of many-particle entangled 
states is decoherence due to the coupling of the system to the environment. A scheme 
to correct for the effects of decoherence and enforce coherent evolution in the system 
dynamics is described and illustrated for the particular case of the ion-trap quantum 
computer. 

T h e  preparation and manipulation of N- 
particle entangled states is fundamental to 
the investigation of basic aspects of quantum 
mechanics and is the basis of applications 
such as quantum computation, teleporta- 
tion, cryptography, and spectroscopy ( 1 ,  2). 
The major obstacle to the production of an 
entangled state in the laboratory is decoher- 
ence because the system couples to an envi- 
ronment. Suppressing environmental effects 
is thus essential to create entangled states in 
mesoscopic systems. This questlon is closely 
related to the problem of error correction in 
quantum computers (QC). In the following 
we adopt a language in which the manipu- 
lation of a system of particles is phrased as a 
computation in a QC. Such a device can be 
thought of as a system of spin-112 particles 
(qubits) with states 0 )  and 1 ) .  Any unitary 
(reversible) operation on the system of par- 
ticles (that is, any computation) can be 
decomposed into a sequence of one-qubit or 
two-qubit gates, which are operations that 
involve one and two particles, respectively. 
Thus, any state (entangled or not) of the 
system can be generated if one can imple- 
ment one- and two-qubit operations ( 1 ) .  

lnst~tut fur Theoret~sche Physik, Universitat Innsbruck, 
Technikerstrafle 25, A-6020 Innsbruck, Austria. 

The effects of decoherence correspond to 
errors in the computation. 

The error correction schemes proposed 
so far have focused on preserving a given 
entangled state (memory errors) (3). We 
introduce a method to correct for the effects 
of decoherence in the dynalnical process of 
preparation and modification of entangled 
states (gate errors). The proposed scheme is 
a first-order error correction that allows us 
to effectively square the number of gate 
operations relative to the uncorrected case. 
The motivation is that in auantum o~t ica l  
systems, entangled states are achieved by 
coupling qubits to another degree of free- 
dom that in turn undergoes decoherence by 
coupling to a heat bath. For example, in the 
ion-trap QC (4),  the qubits can be stored in 
long-lived atomic ground states (5) with 
decoherence time =I000 s (2). Two-bit 
quantum gates are implemented by coupling 
the ions to the collective center-of-mass 
motion in the trap, which decoheres in a 
time =1 ms (5). Thus, at least in present 
experiments, gate errors predominate. 

We illustrate our scheme in the context 
of the ion-trap QC (4). We consider a 
specific model of decoherence that results 
from a linear Markovian coupling between 
the ion motion (phonons) and a reservoir at 
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zero temperature. The  essential results are 
summarized in Fig. 1, where we plot the 

eliminates the effects of decoherence up to 
first order in E and will square the number 
of possible operations: N = o(l /e2) .  W e  
identifv the conditions for this dvnamical 

o(e2). Let us now show in more detail the 
steps and conditions required for this 
method to work. 

A )  In order to detect ~ ~ n a m b i g u o ~ ~ s l y  the 
occurrence of a jump with the measurement 
A/ ,  it is required that ITJ(t,)) E XJ 1 X .  

B) If a jump is detected, we wish to 
restore the initial state IT(0)). We do not 
know at which time T during the gate the 
jump occurred, and therefore, the correc- 
tion procedure has to restore the state re- 
gardless of the unknown (random) time T. 

Obviously, this restoration cannot be 
achieved by a unitary evolution. Instead, 
one can use the projection postulate of 
quantum mechanics, that is, perform anoth- 
er measurement A, to accomplish a non- 
unitary transformation. Depending on  the 
outcome of this measurement, the state 

fidelity for successf~~l operation P as a func- 
tion of the number of applied two-bit gates. 
Note that the number of reliable gates No,, 
is effectively squared. 

The ideal (error free) evolution of a svs- 

first-order error correction and show that 
this scheme can be implemented in a par- 
ticular but relevant example of decoher- 

tem during a ;wo-qubit'gate is governed by 
the Schrodinger equation d/dtlT,(t)) = 
-iH,lq,(t)), so that the quantum state at 
time t, after the gate is Iq,(t,)) = 
U,(t,)T(O)), where Uo is the time evolution 
operator due to the Hamiltonian Ho. We 
denote by X the Hilbert space of input states 
q (O)) ,  which coincides with the space of 
the possible output states Iq,(t,)). Environ- 
mental coupling causes the state of the sys- 

ence: a universal quantum gate in the 
ion-trap QC. 

Although one could solve Eq. 1 up to 
first order in E, we find it more convenient 
to use the language of quantum trajectories 
(6). In this case, the system evolution is 
represented by an ensemble of wave func- 
tions that propagate according to the effec- 
tive Hamiltonian Heff, interrupted at ran- 
dom times by quantum jumps. After the 
gate and up to order E ,  the (normalized) 
system wave function will be either 

tem no longer to be pure but to develop into 
a mixture described by a system density op- 
erator D. Provided that the correlation time ITJ(t,)) will be projected onto a subspace 

J - T a u T T O  1 ( 1  c XI. In order to recover the state of the invironment is much shorter than the 
typical system evolution time, this density 
operator obeys a Markovian master equation 

in case of a jump at the random time 0 < T l@t0)) u;iquely, these spaces have to be 
5 t, in channel j, or mutually orthogonal and contain sufficient 

information to allow reconstruction of the 
ITNl(tg)) = ~ , i t ( ~ ~ ) I ~ ( ~ ) ) / I l  I I  (4) original state. " 

C )  In case of no jump, we wish to find a 
measurement A, that restores the ideal 
state with probability 1 - o(e2). This can 
be done provided that q L ( t g ) )  E X, I X .  
If this is fulfilled. the measurement A, cor- 

where 
if no jump occurred. Here 1 1  denotes the 
norm, Ueff is the time-evolution operator 
generated by Heff, and we have decomposed 
the state vector T(t,)) into two orthogonal 
states: the first representing the ideal (error 
free) evolution ITi(t,)), and the second, the 
error /TL(tg)) .  Both the effective evolution 
and auantum i u m ~ s  induce errors. 

responds to a projection onto either X or 
X,. The  probability for projection onto the 
wrong state is o(e2). Here a, are sysrem operators as they appear in 

the system-environment coupling, whereas 
K, is related to the decoherence rate in the 

These three conditions seem to be re- 
strictive and difficult to satisfv in ~rac t ice .  

j;h of d channels and i. denotes the Hermi- 
tian conjugate. These damping and noise 
terms introduce errors into the computation. 

d L 

~ i e  idea of our first-order error correc- 
tion scheme after the gate operation is as 
follows: First, perform a measurement A, 

, 

However, we illustrate with an example 
how this procedure can be implemented for 
a particular model of quantum computation 
and decoherence. The ion-trap Q C  consists 
of a set of ions in a linear tram Two internal 

The solution to the master equation after the 
gate can be expanded as p(t,) = 

IT,(t,))(q,(t,)l + ep, + o ( ~ ' ) ,  where e = 
max(~ , t  ) << 1 and p, 1s the first-order error. 
Thus, t t e  number of gate operations N that 

to detect whether a jump took place o; 
not. If a jump is detected, apply a correc- 

atomic levels store the qubits. Single-qubit 
gates can be performed by acting with a 
resonant laser beam on the corresoondine 

tion mechanism to recover the initial state 
and repeat the gate. For reasons that will 
be apparent below, this correction mech- " 

ion. Two-qubit gates are implemented by 
entangling two ions through the exchange 
of a phonon with a laser tuned to the lower 
motional side band (dim arrow in Fig. 2A). 

can be successfully performed in the pres- 
ence of decoherence is N = o(l/e).  We 

anism will involve another measurement 
A 2 .  If n o  jump occurred, perform a n  ap- , ,  , 

describe an error correction scheme that propriate measurement A, that projects 
onto the ideal state with probability 1 - 

Table 1. Two-qubit gate (Eq. 5) in the presence of phonon damping. Columns (i) to (iii) list the 
intermediate states during the steps in Eq. 5. The last column shows the unnormalized states (up to first 
order in E) after the complete gate operation under He, (when no jump has taken place). The coefficients 
c and s, are cosine and sines corresponding the Rabi oscillations in the jth step, respectively, for steps 
(ii to (iii). If there is no jump, the unnormalized state after the gate evolved according to He, [or,,,,, are 
constants of order o( l) ,  depending on the ratio between Rabi frequencies for steps (i) and (ii)]. The boxes 
indicate the components of the states that suwive after a quantum jump. 

State Step (i) Step (ii) Step (iii) No jump 
Fig. 1. Probability of measuring the correct result 
Pe, after the application of N two-bit quantum 
gates C~b:ie,),Lie2)); (-I)E1s21s1)~~2)); to the ini- 
tial state (0)kIO)i t ll),Lll)k, Dashed line: quan- 
tum gate without error correction. Solid line: 
present error-correcting scheme. The parameters 
have been chosen such that the probability for an 
error within a single gate Ckb without error correc- 
tion is p = 0.09. 

-s,10e;)10)~ 
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A universal two-bit auantum eate between 
u 

ions a and b can be carried out in three steps 
(4): (i) a -n laser pulse swaps the qubit of the 
ion a to the center-of-mass mode. (ii) a , ~ ,  

conditional sign change is introduced 
through an auxiliary state e ' )  with the help 
of a 2-n pulse on ion b, and (iii) the qubit of 
ion a is restored by inverting step (i).  This 
corresponds to the sequence 

where /E,,, = 0, l)a,b represents the state of 
the ion, and refers to phonons in the 
center-of-mass motion. 

T o  illustrate how the correction scheme 
can be implemented, we assume that the 
phonons of the center-of-mass mode are 
coupled to a zero-temperature reservoir, as 
described by Eq. 1, with a single decoher- 
ence channel (d = I ) ,  and where a is the 
phonon annihilation operator. Physically, 
this decoherence is the result of the cou- 
pling of the ion charge to the electrodes of 
the trap, which play the role of an environ- 
ment (2).  The  effects of quantum jumps and 
the effective Hamiltonian during the gate 
(Eq. 5) are shown in Table 1. 

The  error-corrected quantum gate is 
based on the, following three elements (Fig. 
3): . ' 

1)  A t  the beginning of the gate opera- 
tion between ions a and b, we encode each 
of the logical (L) qubits in two physical 
qubits a,,, and b,,,, respectively (redundant 
encoding) 

with E = 0 , l  and x = a,b; after the gate, we 
decode. These two physical qubits are 
stored in a single four-level ion lo), E 
O), O),, . . . (Fig. 2B). The unitary trans- 
forAtion % thus requires only a single-ion 
o~era t ion .  In addition, these "aubits" can 
be manipulated independently with single- 
ion operations (laser pulses). The  Hilbert 
space of allowed computational inputs X is 
spanned by states of the form 

where IX) denotes states of the rest of the 
ions not involved in the gate operation. 
They contain all of the information about 
the state of the QC. 

2) Our aim is to ~er form the universal 
gate Ckh: I&, )~ l~ , )~  + ' (- l )"~ '~/~,)k/&,)k be- 
tween the logical qubits a and b stored in the 
physical qubits a,,, and b,,,, respectively. 
Using Eq. 6, we decompose Ckh = 

C, , Ca,,h,Cn,,h,Cnl,bl (Fig. 3 1. Each of these 
fol i  kubgates are now performed in the same 

way as in the uncorrected case (Eq. 5). For 
reasons outlined below, we now use interme- 
diate states involving two phonons 12),. This 
can be achieved by tuning the laser to the 
second lower sideband (black arrow in Fig. 
2A). Each of the four subgates Cn,,b, acts only 
on two physical qubits at a time. As an 
example we consider the operation Cn,,h,.  
The state of the QC Eq. 7 before the subgate 
can be rearranged as 

with 

The subgate Cn,,h, operates on only the 
first three kets of Eq. 8. The action 
of Ca,,h, (and the corresponding errors due to 
quantum jumps and the effective evolution) 
can be read directly from Eq. 5 and Table 1 
with the replacement I I), + 2)1,. Analogous 
arguments apply to the other subgates. 

3 )  Measurements after the pate will in- " 

volve detection of the presence or absence 
of ~ h o n o n s .  This detection can be accom- 
plished with an extra ion and the quantum 
jump technique (5). This "red light ion" is 
pumped into an additional internal level, 
provided that one or more phonons are 
present, by tuning a laser to the lower mo- 
tional sideband. Fluorescence ithe red 
light) will indicate the presence ofphonons 
and thus an error. 

Steps A through C outlined above are 
performed explicitly as follows (Fig. 3): 

A,,,,) According to Table 1, a quantum 
jump during one of the subgates will trans- 
form the state of the QC into a state with 
one phonon (wiggly line in Fig. 2A). This 
defines XJ, which is orthogonal to X as 
required in step A. The state after the jump 
will remain unaffected until the end of the 
subgate (independent of the jump time). 
Thus, the occurrence of a jump can be de- 
tected with the red light ion after the sub- 
gate, which defines the measurement &,. 

B,",,) If a jump was detected after one of 
the sub~ates ,  we wish to recover the state 

L . ,  

before this particular operation. As an ex- 

Fig. 2. (A) Step (i) of Eq. 5: tune the laser (L) to the 
f~rst (d~m arrow) or second (black arrow) motional 
sideband. Occurrence of a quantum jump is 1nd1- 
cated by QJ. (B) Redundant encoding in a four- 
level Ion as in Ea. 6. 

ample, we show how this is accomplished 
for a quantum jump occurring in step (ii) 
(Table 1 )  of the subgate Gal+,,. The  result- 
ing state will be 

This state depends on  the time T, when the 
quantum jump occurred. However, this de- 
pendence can be eliminated by measuring 
the state of the physical qubit b,; this action 
defines the measurement A,. If the qubit b, 
is found in the state of the QC will be 
projected onto *jI) lo),, l ~ ~ ~ l l R l , o ~ ~  
whereas if it is found in I I), , the state of the 
Q C  will be projectkd"i onto ITJ ) oc 

lo), I )b l~R1, l ) .  The  subspaces XI, and XI, 
assdciated with the two ~ossible  outcomes 
of &, contain all of the mates IX,,]) (Eq. 9), 
are manifestly orthogonal, and thus con- 
form to condition B. 

C,,,,) If no jump took place during the first 
subgate, the state of the QC under the effec- 
tive time evolution is given by Eq. 8 with the 
replacement of E,),~~E,)~,~O)~, with the last 
column of Table 1. There will be a super- 
position of 0),  and 12), phonon states. The 
measurement A, will project onto the state 
0), with probability 1 - o(e2), and there- 
fore, we only need to consider the zero- 
phonon component. From Eq. 8 and Table 
1 it can be shown that (to order E) the 
complete gate Ck,h yields the following 
transformation 

where a is independent of E,,? and 
(P k, ,,le;)kle;)k = 0 for all EI,z,EI,,. 
Therefore, X, iX, as required in  C .  Af- 
ter the fourth subgate and decoding W' 
(Eq. 6) ,  the state TL( t , ) )  will correspond 
to the one in which at  least one of the ions 
a and b is in the lower manifold spanned 
by I1),,IO),, and 11),,10),, (x = a, b). T h e  
measurement simply checks [with prob- 
ability of success 1 - o(eZ)] that no popula- 
tion is left within this manifold. This mea- 
surement is again implemented with the 
quantum jump technique. 

The  numerical results presented in Fig. 1 
are based on  the example discussed above. 

Red l~ght ion ~~~ 

Fig. 3. Log~cal two-qu~b~t gate w~th error correction 
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We plot the probability to measure the 
correct result P after N applications of the 
gate C,Lh to the initial state IV(0)) . ~ r  

(IO)bIO)k + j1));jl)k). We have chosen the 
parameters such that a single gate Ckb fails 
with probability p = 0.09. Without error 
correction (dashed line), Nc>p = 1/p = 11 
gates can be performed reliably, where P = 

exp(-N/Nop). Note that we have used the 
gate C,Lh instead of Cab (Eq. 5)  for the 
uncorrected case to make comparison easi- 
er. With error correction we can perform 
N,,, = 4/p2 = 500 gates. 

The present scheme can be generalized to 
more realistic situations. First. it is relevant 
to extend the present scheme to finite tem- 
perature reservoirs for the phonon mode. In 
this case. there are two decoherence chan- 
nels corresponding to heating and cooling. 
To distinguish the corresponding quantum 
jumps, one has to use the third motional 
sideband and design Jl4, to measure the pho- 
non number (7). Second, it is possible to 
correct for the occurrence of n quantum 
jumps in one decoherence channel (jump 
operator a)  during one gate, which would 
allow N = o(l/en+') operations. For this 
correction, one has to use the n+ l th  side- 
band and gate symmetrization as in (8). 

A remarkable feature of our proposal is 
that error-testing measurements are per- 
formed after the gate operation to correct 
errors that ceuinulated during the coinpu- 
tation. The overhead required by the 
scheme is rather moderate: each logical 
qubit is encoded into two qubits that are 
stored in the same (four-level) ion. This 
setup has the advantage that one-qubit 
gates (for which decoherence is assumed to 
be negligible) are the same with or without 
the redundant encoding. On the other 
hand, implementation of the two-qubit gate 
requires an overhead of four two-qubit sub- 
gates. A proof-of-principle experiment to 
demonstrate the possibility of correcting ef- 
fects of decoherence in dissipative quantum 
dynamics could be performed with three 
trapped ions, which seems to be attainable 
with present technology (5). 

REFERENCES AND NOTES 

I. C. H. Bennett, Phys. Today 48, 24 (October 1995); 
D. P. DiV~ncenzo, Science 270, 255 (1 995). 

2. D. J. Wineland eta/ . ,  Phys. Rev. A 50, 67 (1 994). 
3. P. W. Shor, hid. 52, 2493 (1995); I .  L. Chuang, R.  

Laflamme, P. W. Shor, W. H. Zurek, Science 270, 
1633 (1 995); A. Steane, preprint quant-phl9605021 
at http://xxx.lanl.gov; H. Mabuchi and P. Zoller, 
Phys. Rev, Lett. 76, 3108 (1996); E. K n ~ l  and R. 
Laflamme, preprint quant-ph/9600034 at http://xxx. 
lanl.gov 

4. J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 
(1 995). 

5. C. Monroe eta/.,  Bid. 75, 471 4 (1 995). 
6. J. Dalibard eta/.,  /bid. 68, 580 (1992): C. W. Gardiner 

et a/. ,  Phys. Rev. A 46, 4363 (1992): H. J. Car- 
michael, An Open Systems Approach to Quantum 
Optics, Lectures Notes in Physics m18 (Springer, 

Berlin, 1993). For a review, see P. Zoller and C. W. 9. This work is supported in part by the Austrian Sci- 
Gardiner, in Quantum F/uctuations, Lecture Notes ence Foundation, Acciones ' lntegradas Austria- 
Les Houches Summer School 1995, E. Giacobino et Spain, and the European quantum information net- 
a/.,  Eds, (Elsevier, New York, in press). work. 

7. T. Pelizzari eta/ . ,  unpublished results. 
8. T. Pelizzari etai. ,  Phys. Rev. Lett. 75, 3788 (1995). 19 April 1996; accepted 16 July 1996 

Flux Line Lattice Melting Transition 
in YB~,CU,O,~,, Observed in 
Specific Heat Experiments 

Marlyse Roulin, Alain Junod,* Eric Walker 

When a magnetic field penetrates a type II superconductor, it forms a lattice of thin 
quantized filaments called magnetic vortices. Resistance, magnetization, and neutron 
diffraction experiments have shown that the vortex lattice of high-temperature super- 
conductors can melt along a line in the field-temperature plane. The calorimetric sig- 
nature of melting on this line was observed in a high-accuracy adiabatic specific heat 
experiment performed on YBa,Cu,O,,,. The specific heat of the vortex liquid was 
greater than that of the vortex solid. 

W h e n  the temperature T of a classical type 
I1 superconductor is lowered in a constant 
magnetic field H > 0, it enters a mixed 
sta;e in which the field'partially penetrates 
the sam~le  and forms a lattice of thin auan- 
tized filaments called magnetic vortices. 
Each vortex carries a quantum of magnetic 
flux @,. Although the mixed state is super- 
conducting, an electric current generates 
dissipation if the vortex lattice is allowed to 
flow. Fortunately, this lattice can be pinned 
and the zero-resistance ( R )  state restored 
(up to a critical current) by introducing 
suitable defects. In any case, the magneti- 
zation M = -dF/dH (where F is the free 
energy) varies contin~~ously at the border of 
the mixed state, and the transition is there- 
fore of second order. The s~ecific heat C 
shows a jump without any latent heat. 

The magnetic structure that is obtained 
upon cooling most high-temperature super- 
conductors through the superconducting 
phase boundary differs from this picture. 
The vortices first forin a liquid. Although 
the discussion of the normal state to super- 
conductivity is also controversial because of 
the effect of thermal fluctuations ( I ) ,  the 
main interest has concentrated on the tran- 
sition in the superconducting state-the 
freezing of the vortex lattice. 

Vortex lattice freezing or melting has been 
investigated by several groups using mainly 
resistance, magnetization, and neutron dif- 
fraction experiments (2-7). Phase diagrams 
were constructed in the (H,T) plane and 
correspond to the usual (p,T) phase diagram 
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(where p is pressure) for solids and liquids 
made of atoms or molecules. An interesting 
difference is the possibility of valying the 
density of vortices over orders of magnitude by 
simply changing the magnetic field. The 
melting line for Bi2Sr2CaC~~20s (Bi-2212) 
was found to join smoothly the superconduct- 
ing transition temperature [Tc = 90 K, induc- 
tion field B = 01 and a critical point (T,, = 
37.8 K, B,, = 380 G)  (3). Hall probes re- 
vealed a jump in M that increased from 
4nAM .= 0.2 G just above T,, to =0.4 G just 
below Tc. In YBa2Cu,0, (Y-123), the melt- 
ing line could be followed from the supercon- 
ducting transition temperature (T = 93 K, 
B = 0) up to the point (T = 78 K, B = 8 T)  
(5, 6). The possible existence of a critical 
point at higher fields was not clarified. A 
jump in M was also observed with SQUID 
(superconducting quantum-interference de- 
vice) magnetometry that decreased smoothly 
from 4nAM .= 0.3 G at 82 K to zero at T, (5, 
6). These iuin~s in M in both Bi-2212 and " & 

Y-123 were considered as a thermodynamic 
argument in favor of a first-order transition. 

The full nroof for the existence of a 
first-order transition at the melting temper- 
ature T,,,(H) must include the observation 
of the corresponding discontinuity in the 
entropy S = -dF/dT, or equivalently, of a 
peak in C with an integrated latent heat 
A Q  = T,,AS. Because the number of vorti- 
ces is directly proportional to the induction 
field B, then, due to the much higher melt- 
ing fields in Y-123, it should be possible, for 
a given temperature near Tc, to observe an 
effect that is about two orders of magnitude 
greater for Y-123 than for Bi-2212; there- 
fore, we focused on Y-123. The Clausius- 
Clapeyron equation, AS/AM = -dH,,/dT, 
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