
fined. W e  postulate that VirB2 and VirBj 
are the structural components of the pilus 
because of sequence homology with the 
pilin of the Escherichia coli F plasmicl and a 
p ~ ~ t a t i v e  pilin subunit encoded by the 
IncN plasmld pKb1101 ( 2 2 ) .  The  require- 
ment for VirD4 in pilus asselnbly is sur- 
prising, because its homolog in the IncP 
system, TraG, is not essential for the syn- 
thesis of P pili ( 2 3 ) .  However, cclnstruc- 
tion of P pili requires TraF for which a 
homolog does not exist on the T i  plasmid 
( 2 4 ) .  The  requirement for VirD4 in pilus 
assembly inay suggest that regions of 
VirD4 rep lqe  TraF in pilus assembly. 

Once asiembled, these Ti plasmid-en- 
coded pili probably function in a mallner 
similar to that of the classic sex pilus en- 
coded by the F plasmid ( 1 4 ) .  The Agrobac- 
terizi7-r~ pili probably attach to the recipient 
plant cell to establish a stable mating pair. 
The pili may then retract to create a chan- 
nel for movelnent of the T-DNA strand and 
VirE2 protein directly into the plant cell. 
Therefore, further studies of Agrobacterizcm- 
mediated DNA tratlsfer should lead to a 
better ut~derstanding of not only interklng- 
doln but also interhacterial DNA transfer. 
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Role of Postreplicative DNA Mismatch Repair in 
the Cytotoxic Action of Thioguanine 

Peter F. Swann," Timothy R. Waters, David C. Moulton, 
Yao-Zhong Xu, Qinguo Zheng, Mina Edwards, Raymond Mace 

It is proposed here that the delayed cytotoxicity of thioguanine involves the postrep- 
licative DNA mismatch repair system. After incorporation into DNA, the thioguanine 
is chemically methylated by S-adenosylmethionine to form S6-methylthioguanine. 
During DNA replication, the S6-methylthioguanine directs incorporation of either thy- 
mine or cytosine into the growing DNA strand, and the resultant S6-methylthiogua- 
nine-thymine pairs are recognized by the postreplicative mismatch repair system. 
Azathioprine, an immunosuppressant used in organ transplantation, is partly con- 
verted to thioguanine. Because the carcinogenicity of N-nitrosamines depends on 
formation of 0"-alkylguanine in DNA, the formation of the analog S6-methylthiogua- 
nine during azathioprine treatment may partly explain the high incidence of cancer 
after transplantation. 

Mercaptopurine and thioguanine are cyto- 
toxic drugs used in the treatment of acute 
leukemia, and azathioprine, a pro-drug that 
is converted in vivo to mercaptopurine, is 
used for immune supl~ression in tra~lsplant 
surgery ( I ) .  The  cytotoxicity of thioguanine 
and mercaptopurine illvolves changes in 
purine metabolism and, in the case of hot11 
drugs, the forlnation of 2'-deoxy-6-thio- 
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?To wtiom correspondence should be addressed 

guallosille trlphosphate and the incorpora- 
tion of thioguanine Into DNA ( 1 ) .  The 
ilelayed cytotoxiclty and chromosome dam- 
age that are characteristic of these drugs are 
associated with this illcarporatio~~ ( 2 ) .  

N-methyl-N-nitrosc>~~rea produces simi- 
lar iielayed cytotoxicity (3) and chromo- 
some damage (4). A n  indicatio~l that the 
superficial reseinblal~ce het\\reen these poi- 
soils may have a deeper mechanistic bass 
has colne from the observation that certain 
eukaryotic cells that are resistant to N- 
methyl-N-nitrosourea are also resistant to 
thioguanine (5,  6). Both drugs produce few- 
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er sister chromatid exchanges in the resis- 
tant than in normal cells (7). Investigation 
showed that these resistant cells lack a com- 
Donent of the ~ostre~licative mismatch re- 
pair pathway 18) aAd has supported the 
earlier suggestion (9) that the toxicity of 
N-methyl-N-nitrosourea depends on (i) 
methylation of O6 of guanine in DNA, (ii) 
miscoding of this methylated base during 
DNA replication to give O6-methylgua- 
nine-T base  airs in the new DNA. and 
(iii) recognition of these pairs by the mis- 
match binding proteins hMSH2 and GTBP 
(hMutSa) (1 0). 

Our investigation of the role of post- 
replicative mismatch repair in the toxicity 
of thioguanine began with the obser- 

A 
3001-.--*-..- UV absorbance. 

vation that the sulfur of thioguanine resi- 
dues in DNA reacts readily with alkylating 
agents, including those, such as methyl 
iodide, that react by an S,2 mechanism 
and do not react with O6 of guanine (1 1 ). 
This raised the possibility that in vivo 
thioguanine in DNA might be methylated 
by S-adenosylmethionine (SAM), because 
SAM is known to act as a weak methyl- 
ating agent (12, 13). An experiment in 
vitro (14) showed that SAM methylates 
DNA containing thioguanine (Fig. 1). 
The methylation was predominantly of 
the S6 of thioguanine residues (Fig. I ) ,  and 
the extent of methylation was about 38 
times greater than the reported methyl- 
ation of N7 of guanine in natural DNA 
under the same conditions (13). 

Time (min) 

2.0, 
B 

I 

nine must take into account the fact that 
removal of the methyl group of S6-meth- 

Time (min) 

Fig. 1. Methylation in vitro of thioguanine in DNA 
by [3H-methyl]SAM to form S6-methylthioguanine 
(14). After the reaction, marker DNA containing 
9-methylthioguanine was added as carrier. This 
carrier DNA was separated from the ori~inal thio- 
guanine-containing DNA by chroma~ography. 
Half the recovered carrier was rechromato- 
graphed. (A) shows that reaction between SAM 
and the thioguanine-containing DNA had pro- 
duced a radioactive product that eluted from the 
column with the marker DNA containing S6-meth- 
ylthioguanine. The other half of the recovered car- 
rier was hydrolyzed to nucleosides, and these 
were separated by HPLC. UV, ultraviolet; dpm, 
disintegrations per minute; A,,, absorbance at 
260 nm. (B) shows that the radioactivity was in a 
nucleoside that eluted with the marker S6-methyl- 
thiodeoxyguanosine ([S6]methylthiodG); cpm, 
counts per minute. 

. , 

Next, we monitored the incorporation 
of thioguanine and the formation of S6- 
methylthioguanine in the DNA of cells in 
culture (1.5). A CHO cell line that is 
resistant 'to 'both N-methyl-N-nitrosourea 
and thioguanine (clone B) (5) was grown 
for 3 days in medium containing thiogua- 
nine. The medium was then replaced with 
fresh medium with L-pH-methvllmethi- , . 
onine but no thioguanine. After 26 hours, 
the cells were harvested. Analysis of the 
cellular DNA revealed that 3% of the 
guanine had been replaced by thiogua- 
nine, and 1.6 in lo4 of these thioguanine 
residues had been methylated during the 
26-hour incubation with [3H]methionine. 
This is equivalent to 1.2 S6-methylthio- 
guanine residues Der lo6 nucleotides of " 
DNA, a figure comparable to the amount 
of 06-methylguanine (eight O6-methyl- 
guanine residues per lo6 nucleotides) pro- 
duced by exposure of the same cell line to 
N-methyl-N-nitrosourea (375 pM for 30 
min) (7). Comparison of the amount of 
06-methylguanine and S6-methylthiogua- 

Time (s) 

Fig. 2. Coding properties of S6-methylthiogua- 
nine during DNA synthesis. The graph shows the 
incorporation by the Klenow fragment of E. coli 
DNA polymerase (1 7) of dCTP (0) or thymidine 
triphosphate (a) into the growing DNA strand di- 
rected by an 9-methylthioguanine in the template 
DNA strand. 

ylthioguanine by the human DNA repair 
protein, O6-alkylguanine-DNA-alkyl- 
transferase, is lo6 times slower (k = 79 
M-' s-') than the removal of the methyl 
group of 06-methylguanine (k = 5.7 x 
10' M-L S - L  ) (16). 

To determine the coding properties of 
S6-methylthioguanine, DNA containing 
S6-methylthioguanine was used as a tem- 
plate for DNA synthesis in vitro (17). Thy- 
mine and cytosine were incorporated oppo- 
site S6-methylthioguanine at similar rates 
(Fig. 2). This miscoding is similar to that of 
06-methylguanine, except that under simi- 
lar conditions thymine is incorporated op- 
posite 06-methylguanine four times faster 
than cytosine (1 8). 

We then tested whether the mismatch 
binding protein complex hMutSa would 
bind to the S6-methylthioguanine-T base 
pairs produced by this miscoding. When a 
HeLa cell extract was incubated with 
DNA containing one S6-methylthiogua- 
nine-T pair (1 9) the mismatch was bound 
by a protein or proteins in the extract (Fig. 
3). This appears to be recognition of the 
S6-methylthioguanine-T base pairs by the 
hMutSa proteins of the postreplicative 
mismatch repair system because (i) the 
complex had the same mobility as the 
complex with DNA containing a G-T 
mismatch, (ii) DNA containing a G-T 
mismatch competed for the protein or pro- 
teins that bound an S6-methylthiogua- 
nine-T mismatch, and (iii) DNA contain- 
ing the S6-methylthioguanine-T mis- 
match competed for the protein or pro- 
teins that bound a G-T mismatch (Fig. 3). 
Although there was generally little bind- 
ing to DNA with an S6-methylthiogua- 

Bound [32P]DNA: G-T Bound [32P]DNA: meSG-T 

I - - 

Fig. 3. Binding of HeLa cell proteins to DNA 
containing either a G-T (left panel) or an 9 -  
methylthioguanine-T (meSG-T) base pair (right 
panel) (19). The upper bands in the autoradio- 
graph correspond to protein-bound DNA and 
the lower bands correspond to free DNA. The 
left panel shows that the protein binding of the 
G-T mismatch can be competed out with excess 
DNA containing either a G-T or meSG-T base 
pair but not by DNA containing a G-C or 
meSG-C base pair. The right panel shows that 
the binding of an meSG-T base pair can be com- 
peted out by excess DNA containing a meSG-T 
or G-T base pair but not by DNA containing a 
G-C or meSG-C base pair. 
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nine-C base pair, the proteins did bind to thus predispose the animal to cancer. Be- was hydrolyzed enzymically to nucleosides, S6- 
methylthiodeoxyguanosine was added as carrier, one DNA in which there was a cytosine 5' cause cells can also protect themselves and the nucleosides were separated by HPLC as 

to the S6-methvlthioguanine-C pair (the against the cvtotoxicitv of thioguanine bv above. The amount of S6-13Hlmethvlthiodeoxv- 
remaining sequence was the same as losing mismaich rep&, one might specu: guanosine was estimated wit; the assimption that 

shown in the legend to Fig. 3).  This raises late that cancer in transplant patients may ::: ~ ~ ~ ~ ~ ~ f ~ $ t ~ ~ , " ~ ~ ~ ~ ~ ~ , " i , " ~ ~ k " , " , " ~ ~ ~  
the possibility that miscoding during reflect loss of mismatch repair. 16. DNA duplexes [5'-32P]GGCGCnGAGGCGTG con- 

DNA replication may not be necessary for taining at position X either S6-methylthioguanine 

recognition of the s6-methylthioguanine 
in some sequence contexts. 

These results and the fact that thiogua- 
nine produces sister chromatid exchanges 
(20), a type of chromosome damage associ- 
ated with postreplicative mismatch repair 
(21), suggest that the methylation of thio- 
guanine residues in DNA by S-adenosylme- 
thionine,'miscoding by this methylated base 
during DNA synthesis, and the recognition 
of the resultant S6-methylthioguanine-T 
pairs by the postreplicative mismatch repair 
system are the basic steps in the delayed 
cytotoxicity of thioguanine and mercapto- 
purine. This would be an interesting exam- 
ule in which a DNA reuair svstern mediates 
;he cytotoxic action oi a clinically impor- 
tant drug rather than defending against it. 
Griffin et al. (22) have shown that hMutSa 
binds thioguanine-T base pairs in DNA, but 
studies of the renlication of DNA contain- 
ing thioguanine (23) suggest that it does 
not miscode with sufficient frequency for 
the toxicity to be ascribed to thioguanine-T 
base  airs. 

These results may help to explain the 
unusual urevalence of certain cancers 
among long-term survivors of organ trans- 
plantation (24). This has previously been 
ascribed to immune suppression. For some 
cancers, such as Kaposi's sarcoma, which 
are also common in immunodeficiency 
diseases such as acquired immunodeficien- 
cy syndrome (AIDS), this hypothesis is 
probably correct. However, most of these 
transplant patients had been treated with 
azathioprine and it has been suggested 
that some types of cancers that appear 
commonly after transplantation, but not 
in AIDS patients, might be the result of 
chemical carcinogenesis by azathioprine 
(2.5). Azathiourine is converted in vivo to , , 

thioguanine nucleotides (25), which could 
result in the formation of S6-methylthio- 
guanine in DNA. This is the analog of 
06-alkylguanine, the most important 
DNA modification in the carcinogenic 
action of the rnethvlatine N-nitroso com- 
pounds. conceivably, then, the formation 
of S6-methylthioguanine in DNA might 
induce these cancers either by mutagene- 
sis or by the mechanism proposed by Kar- 
ran and Bignami ( 1  0) .  These authors have 
suggested that because cells can avoid the 
cytotoxicity of methylating nitroso corn- 
pounds by losing mismatch repair, chronic 
exposure to these compounds would select 
for cells with a rnutator phenotype and 
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