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The T cell clone Ar-5, specf~c for arsonatel-A", ex- 
pressesVm3.1 Jm31 (AV3S5J31) [K.-N. Tan eta/., Cell 
54, 247 (1 98811. Nomenclature follows (13) and B. F. 
Koop eta/. [Genomics 19, 478 (1 994)]. Ths a chain 
was used to raise the antiserum to V-3.1 (ant-V-3.1) 
and to generate V-3.1 transgenic mice (7). The 
monoclonal .pnt~body RR3-16 recognizes V,3.2 
(AV3S2) (8) The AV3S5J31 genomic clone was mu- 
tated by polymerase char  reaction overlap exten- 
sion [S. N. Ho, H. D. Hunt, R. M. Horton, J. K. Pullen, 
L. R. Pease, Gene 77, 51 (198911 and cloned into a 
genomic a-cha~n vector [V. Kouskoff, K. Signoreli, 
C. Beno~st, D. Mathis, J. Immunol. Methods 180, 
273 (1 995)l. Transgenc mce were generated at The 
Scripps Research Institute (TSRI) with FVB oocytes 
and backcrossed to C57BU6J (B6) mice. All anmals 
were treated n accordance with TSRI nstitut~onal 
gudelnes. 
Transgenic mice were screened by fluorescent-act- 
vated cell sort~ng (FACS) on peripheral blood ym- 
phocytes, gating on viable Thyl.2+ cells. The per- 
centage of Vm-expressng cells In CD4 or CD8 pop- 
ulations was determined. M~ce expresslng greater 
than threefold above the endogenous level of VUs 
were cons~dered transgenc. Ant~bodes were pur- 
chased from PharMngen (San D~ego, CA) unless 
otherwise stated. Biotinylated anti-V-3.2 (RR3-16) 
(8) and anti-V,2 (820 1) (6) were used with strepta- 
vidin-fluoresce~n isothiocyanate (FITC). Anti-V,3.1 
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tained from G~bco BRL (Grand Island, NY). 
The skew~ng pattern remained unchanged when an- 
alyzed as percent Vcy3+ cells expresslng CD4 or 
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Protection Against Atherogenesis in Mice 
Mediated by Human Apolipoprotein A-IV 

Nicolas Duverger,* Gunter Tremp, Jean-Michel Caillaud, 
Florence Emmanuel, Graciela Castro, Jean-Charles Fruchart, 

Armin Steinmetz, Patrice Denefle 

Apolipoproteins are protein constituents of plasma lipid transport particles. Human 
apolipoprotein A-IV (apoA-IV) was expressed in the liver of C57BU6 mice and mice 
deficient in apoE, both of which are prone to atherosclerosis, to investigate whether 
apoA-IV protects against this disease. In transgenic C57BU6 mice on an atherogenic 
diet, the serum concentration of high density lipoprotein (HDL) cholesterol increased by 
35 percent, whereas the concentration of endogenous apoA-l decreased by 29 percent, 
relative to those in transgenic mice on a normal diet. Expression of human apoA-IV in 
apoE-deficient mice on a normal diet resulted in an even more severe atherogenic 
lipoprotein profile, without affecting the concentration of HDL cholesterol, than that in 
nontransgenic apoE-deficient mice. However, transgenic mice of both backgrounds 
showed a substantial reduction in the size of atherosclerotic lesions. Thus, apoA-IV 
appears toprotect against atherosclerosis by a mechanism that does not involve an 
increase in HDL cholesterol concentration. 

T h e  role of apoA-IV in lipid transport 
and lipoprotein metabolism is not clear. In 
humans,  apoA-IV is associated with tri- 
glyceride-rich lipoproteins and HDL, and 
also occurs in a lipoprotein-free form ( I -  
4).  ApoA-IV has been proposed to play a 
role in reverse cholesterol transport (cho- 
lesterol transport from tissues back to the 
liver for elimination) on  the basis of in 
vitro properties: It activates lecithin cho- 
lesterol acyltransferase (5,  6) ,  promotes 
cholesterol efflux from cholesterol-pre- 

loaded cells (7-9), and binds to hepato- 
cytes (10). 

T o  investigate the function of apoA- 
IV, we generated transgenic mice that ex- 
press human apoA-IV in the liver. T h e  
transgene comprised an 8.4-kb human 
genomic DNA fragment e n c ~ d i n g  apoA- 
IV linked to the 1.7-kb Pst I-Pst I frag- 
ment of the hepatic control region of the 
apoE/C-I gene ( I  I ) .  T h e  DNA fragment 
was injected into one-cell embryos of 
C57BL/6 mice (IFFA-Credo, Lyon, 
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France), a strain that develops fatty streak 
lesions when maintained on  an atherogen- 
ic diet (12 ) .  Two lines (HuA-IVTg5 and 
HLIA-IVTg9) of transgenic animals were 
obtained, containing 12 and 4 copies, re- 
spectively, of the h ~ u n a n  gene. In both 
lines, human apoA-IV lnRNA was detect- 
able only in the liver. Plasma concentra- 
tions of human apoA-IV in HLIA-IVTg5 
and HuA-IVTg9 mice ranged from 500 to 
1200 mg/dl and from 100 to 500 mg/dl, 
respectively. The  HLIA-IVTg5 mice were 
also crossed with apoE-deficient mice, 
which spontaneously develop severe ath- 
erosclerosls (13 ,  14) ,  to obtain IHuA- 
IVTg5 ApoEpi- hybrid mice. 

Total plaslna cholesterol concentra- 
tions, lipoprotein cholesterol distribution, 
and mouse apoA-I, apoA-11, and apoA-IV 
concentrations were similar in tra~lsgenic 
and control mice on  a Chow diet (Table 
1 ) .  T h e  plaslna concentration of human 
apoA-IV doubled in transgenic mice on  a 
high-fat, high-cholesterol diet. A 10-fold 
increase in non-HDL cholesterol concen- 
tration was observed in both transgenic 
and control mice on  the high-fat diet. 
Transgenic mice on  the high-fat diet 
showed a 35% increase in HDL cholester- 
ol concentration, which was acco~npanied 
by a 29% decrease in the concentration of 
endogenous apoA-I. The  correlation be- 
tween mouse apoA-I and HDL cholesterol 
concentrations apparent in control mice 
( P  < 0.0017) was not observed in trans- 
genic mice. The  increase in HDL choles- 
terol concentration and the decrease in 
mouse apoA-I in transgenic mice on  a 
high-fat diet, together with the lack of 
correlation between mouse apoA-I and 
HDL cholesterol concentrations in these 
anirnals, suggest that apoA-IV may func- 
tionally substitute for apoA-I and form 
HDL-like particles. 

Expression of human apoA-IV (serum 
concentration, 160 to 2040 mg/dl) in apoE- 
deficient mice on a normal diet resulted in 
a 2.6-fold increase in non-HDL cholesterol 
concentrations relative to those in non- 
transgenic apoE-deficient mice [I241 i 58 
versus 471 2 75 mg/dl (means + SEM), 
P < 0.0002, n = 5 transgenic versus 5 
nontransgenic apoE-deficient mice] at 8 
months of age; no difference in HDL cho- 
lesterol concentrations was apparent (26 + 
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Fig. 1. Area of atheroscle- 
7 , ,4 

rotic lesions (per section) E' 1.2 n control mice and trans- 
genic mice expressing hu-  T 
man apoA-IV. (A) Female 0.8 
C57BU6 mce were anes- 0.6 
thetized and exsangunat- .; 0.4 
ed at 30 weeks of age af- a, 0.2 
ter 20 weeks on a high-fat, ,, 
high-cholesterol diet. Data 
are means 2 SEM. "P < 
0.006, **P < 0.0003 ver- (n=17) (n=10) (11=15) (n=5) (n = 5)  
sus controls (Student's t 
test). (6) ApoE-def~cient mce were examined after 8 months on a Chow diet. Data are means -t SEM. "P < 
0.0013 versus control mice (Student's t test). In both (A) and (B), sections were selected as previously 
descrbed (75, 28). The areas of oil red 0 stanng were evaluated in four 10-bm aoric sections (per mouse) 
separated by 80 pm for the C57BU6 mce, and in 21 10-pm aoriic sections (per mouse) separated by 50 pm 
for a~oE-def~cient mice. 

5 versus 23 + 2 mg/dl). Concentrations of 
apoA-I and apoA-11 were similar between 
transgenic and nontransgenic apoE-defi- 
cient Inice (apoA-I, 76 + 5 versus 78 + 6 
mg/dl; apoA-11, 38 + 8 versus 31 2 10 
mg/dl). The atherogenic lipoprotein profile 
in human apoA-IV transgenic apoE-defi- 
clent mice was therefore even more Dro- 
nounced than that in nontransgenic apoE- 
deficient mice, with a 2.75-fold increase in 
the ratio of non-HDL cholesterol to HDL 
cholesterol (55 + 10 versus 20 + 2, P < 
0.05). 

We also analyzed fatty streak lesions and 
atherogenic plaques in transgenic and con- 
trol C57BL/6 mice maintained on an 
atherogenic diet for 20 weeks, as well as in 

L Z  

transgenic and control apoE-deficient mice 
on a reg~llar diet. Mean lesion areas were 18 

and 12 times greater in control mice than in 
HuA-IVTg9 and IHLIA-IVTg5 mice, respec- 
tively (Fig. 1A),  despite the red~~ct ion  in 
Inurine aooA-I concentration in the trans- 
genic animals. Colnpared with control 
apoE-deficient mice, transgenic apoE-defi- 
cient Inice also showed retarded develop- 
ment of atherosclerosis (70% reduction in 
lesion size) (Fig. lB) ,  with fewer f~bropro- 
liferative lesions, by 8 months of age, de- 
spite the Inore prono~unced atherogenic li- 
poprotein profile. In addition, the apoE- 
deficient mice allowed us to excl~lde tlie 
possibility that the atherogenic diet was 
hepatotoxic. A marked reciprocal relation 
was apparent between total ( h ~ u n a n  + 
mouse) apoA-IV concentration and athero- 
sclerosis in apoE-deficient mice ( P  < 
0.0021) (Fig. 2) ,  whereas the mean lesion 

Table 1. Serum concentrations of cholesterol and apolipoproteins in transgenic female C57BU6 mice 
expressing human apoA-1V (HuA-IVTg5) (n = 15) and control female littermates (n = 17). Blood was 
collected from the retro-orbtal plexus of an~mals that had been deprived of food for 4 hours Into a tube 
containing 6 p1 of 0.5 M EDTA, gentamycin sulfate (50 ~glml) ,  and 0.1 % NaN,. Plasma was separated 
by centr~fugation at 2000g for 15 min and stored at 4°C unt~l analysis. H D L  was separated from 
apoB-containng lipoproteins by precipitation w~th dextran sulfate. Cholesterol was assayed enzymati- 
cally by incubation of 10 p1 of d~luted plasma with 200 ~1 of a cholesterol reagent (Boehrnger Mannheim) 
and measurement of absorbance at 490 nm w~th a m~croplate reader (Bio-Teck Instruments EL 31 1). 
Human apoA-IV and mouse apoA-I, apoA-ll, and apoA-1V were quantf~ed by electro~mmunod~ffus~on 
wth rabbt polyclonal antibodies. The ant~bodes to human and to mouse apoA-1V showed no cross- 
speces reactivty. Purina laboratory mouse chow 5001 d~et (Purina MIls Internatonal, St. Louis, MO) 
contaned <0.03% (w/w) cholesterol, 4.5% (wlw) animal fat, and no casein or sodium cholate. Custom 
high-fat diet (ICN Biomedical, Cleveland, OH) contaned 1.25% (wlw) cholesterol, 15% (w/w) fat, 7.5% 
(wlw) casein, and 0.5% (w/w) sodium cholate. Analyses were performed on mice maintained for 10 
weeks on a Chow det and again after they had been swiched for 20 weeks to the hgh-fat atherogenic 
det. Data are means i SEM. 

HuA-IVTg5 Control C57BU6 

Analyte (mgldl) 
Chow det Hgh-fat det Chow d~et 

High-fat 
det 

Total cholesterol 68 2 5 194+ 7 67 + 6 171 i 15* 
Non-HDL cholesterol 11 + 4  117 2 8 11 2 6  119 2 9 
HDL cholesterol 57 + 4 77 + 5 56 r 8 52 % 71' 
Mouse apoA-l 93 % 4 66 i 2 102 i 5 85 i 6:l: 
Mouse apoA-ll 39 i 7 41 ? 2 4 9 r  10 42 + 3 
Mouse apoA-1V 3 0 %  10 40 i 9 2 7 %  11 37 i 8 
Human apoA-IV 690 i 40 1 440 r 70 

*P < 0.05, t P  < 0 0002, :tP < 0.004 versus transgenc mice on the high-fat diet (Student's t test) 
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area was independent of HDL cholesterol 
concentration. 

Another human apolipoprotein, apoA-I, 
also inhibits atherogenesis in mice (15) and 
rabbits (16). However, there are important 
differences between apoA-l and apoA-IV. 
First, although apoA-IV retards the develop- 
ment of atherosclerosis, it has only a small, if 
anv. effect on HDL cholesterol concentra- 
tions. In contrast, HDL cholesterol concen- 
trations are substantially increased and the 
ratio of non-HDL cholesterol to HDL cho- 
lesterol is substantially reduced in human 
apoA-1 transgenic animals (15, 16), even in 
those with apoE deficiency (17, 18). Second, 
the distribution of anoA-IV in olasma differs 
from that of apoA-I. On electrophoresis, 
most human apoA-IV and the endogenous 
apoA-1V in the serum of transgenic mice 
migrates to the prep position (Fig. 3), in 
contrast to apoA-I, which migrates mainly to 
the a position. These electrophoretic mobil- 
ities are similar to those observed with hu- 
man plasma (1 9,  20). Therefore, most of the 
a ~ o A - I v  in transgenic mice is not associated - 
with apoA-I-containing lipoproteins and 
thus is not directly related to apoA-I-HDL 
metabolism. 

ApoA-IV-containing lipoproteins may 
participate in reverse cholesterol transport, 
the first step of which is cholesterol efflux 
from peripheral cells to lipoprotein accep- 
tors. Prep particles are the primary accep- 
tors of cellular cholesterol (21 ). We there- 
fore studied cholesterol efflux from choles- 
terol-loaded Fu5AH rat hepatoma cells 
(22) in the presence of plasma from trans- 
genic o r  control mice. Cholesterol efflux 
after incubation of cells for 2 hours with 
2.5% diluted serum from HuA-IVTg5 trans- 
genic mice on an atherogenic diet was 
134 t 5% (mean 2 SEM, n = 5, P < 0.03) 
of that apparent with serum from control 
mice on the same diet. These results suggest 

that an increased capacity to promote cho- 
lesterol efflux was established in the serum 
of the apoA-IV transgenic mice. 

The protection against atherogenesis in 
human apoA-IV transgenic mice could also 
be related to the observation that the ca- 
tabolism of apoA-IV occurs more rapidly 
than that of apoA-I (23). We propose that, 
in addition to its forming laree amounts of 

u - 
prep particles, the rapid catabolism of 
apoA-IV may explain why apoA-IV-medi- 
ated reverse cholesterol transport is more 
efficient than that mediated by apoA-I. It is 
also possible that apoA-IV, which is present 
in high concentrations as lipid-poor protein 
(9), serves as an apolipoprotein reservoir for 
particle lipid enrichment at the site of 
plaque formation (24). In this respect, it 
may act similarly to apolipophorin 111 in 
insect hemolymph (25). Apolipophorin I11 
exists mainly as a lipid-free protein and 
serves as a reservoir of amphiphilic surface 
protein capable of reversibly stabilizing lipid- 
enriched lipoproteins. Specifically, apoli- 
~ o ~ h o r i n  111 associates with and stabilizes . . 
lipid droplets formed during the delivery of 
diacylglycerol from the fat body to the mus- 
cle (25, 26). Other mechanisms may also 
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Fig. 2. Mean lesion area plotted against total (hu- 
man + mouse) apoA-IV concentration in the se- 
rum of transgenic and control apoE-deficient mice 
at 8 months of age. Three male (0) and two female 
(4 HuA-IVTg5 transgenic apoE-deficient mice as 
well as two male (0) and three female (A) control 
apoE-deficient mice were investigated. 

Prep n 

Fig. 3. Crossed immunoelectrophoresis of plas- 
ma from HuA-IVTg5 mice on a Chow diet (A) 
or on an atherogenic diet (B). Lipoprotein electro- 
phoresis was performed in duplicate for each an- 
imal, and the separated lipoproteins were subject- 
ed to electroimmunodiffusion in agarose contain- 
ing antiserum to human apoA-IV as well as to 
immunoblot analysis with antiserum to rat apoA- 
IV. The nitrocellulose strips subjected to immuno- 
blot analysis for endogenous apoA-IV (arrow- 
heads) are shown below the respective electroim- 
munodiffusion aatterns for comaarison. Most en- 
dogenous apd~-1v and the hlman apoA-IV in 
transgenic animals comigrated to the same prep 
position. A minor fraction of both apoA-IV species 
migrated more rapidly to the u position; this frac- 
tion increased proportionally when the mice were 
fed an atherogenic diet. The origin for lipoprotein 
electrophoresis is on the left. 

contribute to the antiatherogenic action of 
apoA-IV. 

The effects of apoA-IV described here 
may help to explain the absence of athero- 
sclerosis in apoA-I-deficient mice (27). 
Our results also suggest possible new ap- 
proaches to the treatment of atherosclerosis 
that do not require an increase in apoA-I 
and HDL cholesterol concentrations. 
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