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Control of MHC Restriction 
by TCR V, CDRI and CDR2 

Bee-Cheng Sim, Loukia Zerva, Mark I. Greene, 
Nicholas. R. J. Gascoigne* 

Individual T cell receptor VCR) V, elements are expressed preferentially in CD4 or CD8 
peripheral T cell subsets. The closely related V,3.1 and V,3.2 elements show reciprocal 
selection into CD4 and CD8 subsets, respectively. Transgenic mice expressing site- 
directed mutants of aV,3.1 gene were used to show that individual residues in either the 
complementarity-determining region 1 (CDRI) or CDR2 were sufficient to change se- 
lection from the CD4 subset to the CD8 subset. Thus, the germline-encoded V, elements 
are a major influence on major histocompatibility class complex (MHC) restriction, most 
likely by a preferential interaction with one or the other class of MHC molecule. 

Thymocytes that are positively selected on 
MHC class I proteins become peripheral 
CD8+ cells and those positively selected on 
MHC class I1 proteins become CD4+ pe- 
ripheral T cells (1). A n  a p  TCR transgene 
frotn a CD8+ T cell causes most T cells 
bearing that receptor to be positively select- 
ed into the CD8+ compartment (2), whereas 
a transgenic TCR from a CD4+ cell shows 
similarly skewed expression in the CD4+ 
population (3). Less extreme skewing into 
the CD4 or CD8 peripheral T cell subset is 
also seen with individual V regions-most 
noticeably with V, regions, which are pref- 
erentially expressed in one or the other sub- 
set (4-9). This phenomenon is largely inde- 
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pendent of MHC haplotype and suggests 
either that individual V, regions react pref- 
erentially with class I or class I1 lnolecules or 
that particular V, regions associate with the 
CD4 or CD8 coreceptors. 

The structure of the TCR V, domain has 
recently been deterrn~ned (10). The CDR3 
segments of TCR V, and Vp [produced by VJ 
or V(D)J recombination, respectively] are pre- 
dicted to lie centrally in the co~nbining site of 
the TCR (1 0, 1 1 ). If CDR3 interacts with the 
peptide bound in the MHC groove, the less 
variable germline-encoded CDRI- and 
CDR2-equivalent regions would be available 
to interact with the MHC a helices. Thus, 
the skewed expression of V, elements in CD4 
and CD8 subsets silggests that the CDRl and 
CDR2 of V, could play a role in distinguish- 
ing between class I and 11. Closely related 
members of the V,3 family undergo selec- 
tion by different MHC classes (7, 8), allow- 
ing deter~ni~latioll of the resldues involved in 
MHC class discrimination. In B6 mice, 
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V,3.1 is expressed predominantly in CD4 
peripheral T cells (6.3 + 0.7% versus 2.4 + 
0.8% in CD8), whereas V,3.2 is expressed 
mainly in CD8 cells (3.6 2 0.2% versus 
0.9 2 0.1% in CD4) (7, 8, 12). A compar- 
ison of the sequences of V,3.1 and V,3.2 
showed that four amino acid residues (at 
positions 27, 51, 85, and 92) differ between 
them (8,  13). Two out of the four differences 
lie withtn the CDRl and CDR2. Thus, res- 
idue 27 (CDRl)  and residue 51 (CDR2) are 
candidates for interaction with the a helices 
of the MHC molecules. The equ~valent po- 
sitions in V,4 have side chains pointing out 
of the struct~ii-4 (10). Residue 85 lies at the 
base of p strand F and is slightly solvent- 
exposed. It could potentially be available to 

interact with the coreceptor molecules. Res- 
idue 92 is buried and is not part of CDR3. 

To determine if the residues differing be- 
tween V,3.1 and V,3.2 control selection on 
MHC class I or 11, we altered a wild-type 
V,3.1 gene to rese~nble V,3.2 by making the 
mutations Ser'7-+Pl~e (S27F), S5 lP, and 
S85W (14) and producing transgenic lines 
(15, 16). The wild-type V,3.1 transgene 
showed skewed expression in the CD4 subset 
(Fig. 1) (7). In contrast, three independent 
lines carrying the mutant a cham (V,3.lm) 
showed skewed expression in the CD8 subset 
(17). The V,3.2-specific monoclonal anti- 
body RR3-16 reacts with the V,3.lm trans- 
gene (18). The CD8/CD4 ratio of expression 
of the V,3 . lm transgene ranged from 5.7 to 

2.1. In both V,3.1 and V,3.l1n transgenic 
mice, TCR V,2 remained skewed into the 
CD4+ cells (6), indicating that this phenom- 
enon was limited to the transgenic a chain 
(1 2). Therefore, the three mutations created 
In the V,3.1 gene were sufficient to change 
selection from CD4 into the CD8 subset. 

We tested the CDRl and CDR2 poly- 
morphism~ separately with transgenic mice 
in which the V,3.1 gene was mutated to the 
V,3.2 sequence only in CDRl  (CDRlm; 
S27F) or CDR2 (CDR2in; S51P). All three 
of the CDRlm transgenic lines overex- 
pressed CDRlm in the CD8 subset with a 
CD8/CD4 ratio of 2 to 3 (Fig. 2, A and B) 
(18, 19). Similarly, CDR2m was expressed 
predominantly in the CD8 subset (Fig. 2, C 

Fig. 1. (A) Three mutations 
in the VU3.1 gene are suf- 
ficient to change class I - 6o 
and class ll select~on, 5 
Comparrson of Vcx3 ex- . , 

presslon in mice trans- p 40 
genrc for V-3.1 and In 5 
three independent V-3.1 m 20 

lines (15, 16). Sympols 
represent indrvidual trans- 
g e m  mice. A\\ three CD4 CD8 CD4 CD8 CD4 CD8 CD4 CD8 1 o4 104 

Vm3.1 m transgenic lines V,3.1 tg V,3.lm tg line 7 Vm3.1m tg line 23 Vm3.1m tg line 42 103 103 
(lines 7, 23, and 42) u 

showed a h~gher percentage of V,3,1 m in the CD8+ populat~on [I~ne 7 (mean -C SD): 25.3 ? 2.5% 2102 8 102 

of CD8+ and 9.9 ? 2.5% of CD4+ (P < 0.001); line 23: 33.5 i 6.3% and 15.9 i 4.0% (P < O 

0.001); and line 42: 37.6 -C 7.6% and 6.6 i 1.9% (P < 0.001)]. In contrast, Ve3.1 showed 101 101 

recrprocal selection rnto the CD4 subset [71.0 -C 3.5% versus 51.0 -+ 5.6% ~n the CD8+ 100 100 
population (P < 0.001) (I 7, 18)]. (B) Staining pattern for transgenrc V,3.1 and V,3,1 m in the CD8 100 101 102 103 104 100 101 102 103 lo4  

and CD4 subsets of Thy1 + cells. The frequencres of Va3.1 (antl-Va3.1 +) or Va3.1 m (RR3-16+) RR3-16 RR3-16 

(18) cells in the CD8 or CD4 population in the V,3.1 transgenic mrce (top panels) or V,3,1 m transgenic mrce (bottom panels) are shown. 

Fig. 2. Pornt mutations in 
CDRl or CDR2 are sufficient 
to change class I and class l l  
selection. The panels repre- 
sent independent lineages of 
mice transgen~c for CDRlm 
(A) and CDR2m (C). Symbols 
represent indrvidual mrce. The 
frequency of peripheral CD4+ 
or CD8+ T cells expressing 
CDRl m or CDR2m Ve chains 
was determined (16). CDRl m 
transgenic lines 8, 20, and 28 
expressed a h~gher percent- 
age of RR3-16+ T cells (18) in 
the CD8+ subset [line 8: 
54.9 2 6.7% in CD8+ versus 

CD4 CD8 

C D R l m  tg line 8 

B 

CD4 CD8 

CDRlm tg line 20 

CD4 CD8 

C D R l m  tg line 28 

CD4 CD8 

CDR2m tg line 44 CDR2m tg line 60 

27.0 i 5.3% in CD4+ (P < 104 104 

0.001); line 20: 22.6 i 2.0% 
versus 12.3 i 1.8% (P < l o 3  103 

0.001); and llne 28: 16.7 i m w 

2.7%versus 5.5 i 2.1% (P< 8 lo2 8 102 

0.001)]. Both CDR2m trans- 101 101 

genic lines showed similarly 
skewed express~on in CD8+ 1 00 100 

100 101 102 103 104 100 101 l o 2  l o 3  l o 4  100 101 102 103 104 100 101 102 103 104 
[I~ne 44, 52.7 2 6.4% versus 

RR3-16 RR3-16 Va3.1 V,3.1 
15 6 i 2.6% in CD4 (P < 
0.001), and line 60: 37.8 i 5.6% versus 20.8 i 7.7% (P = 0.002)] An alternative ample is shown of CDRl m (B) and CDR2m (D) sta~ning frequencies in the 
method for calculating the skewed expression gave similar results (19). An ex- Thyl.2+CD8+ and Thyl.2+CD4+ subsets. 
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and D) with a CD8ICD4 ratio of 3.4 for line 
44 and 1.8 for line 60 (19). Therefore, 
either of the single-amino acid substitu- 
tions in the CDRl or CDR2 region of the 
V,3.1 gene was sufficient to alter its selec- 
tion from a predominantly class 11-restrict- 
ed to a predominantly class I-restricted 
phenotype. As before, selection of V,2 was 
unaffected (12). No clear difference in the 
strength oi' selection was noted between 
CDRl or CDR2 reeions. " 

Because skewing of other V, elements ap- 
pears to be caused by positive select~on (4-6), 
we stained thymocytes for expression of the 
V,3 protein? in the CD4, CD8-defined sub- 
sets (20). These showed a pattern consistent 
with increased positive selection into the rel- 
evant mature subset, although increased neg- 
ative selection in the other cannot be ruled 
out. Bone marrow chimeras made with the 
panel of V, transgenic mice (21 ) showed that 
preferential expression of the V,3 transgenes 
in peripheral CD4 or CD8 cells was deter- 
mined bv the eenetic origin of the bone mar- 
row cells ( ~ i g r 3 ) .  In t h i  same thymic envi- 
ronment, the T cells bearing mutant forms of 
V,3.1 (V,3.lm, CDRlm, and CDR2m) were 

all selected preferentially into the CD8 subset, 
whereas the wild-type V,3.1 transgene was 
skewed into the CD4 subset. 

It is possible that the altered selection of 
V, is caused by changes in TCR ocp pairing 
(22). Therefore, we investigated the partic- 
iwation of the B chain in the observed 
skewed expressidn of the various forms of 
V,3.1 by breeding the panel of V, trans- 
genic mice with Vp5 and Vp3 transgenic 
mice (23). If there is no B chain effect on 
the V, skewing, the resuitant first genera- 
tion mice will not be ex~ected to show 
selection for or against the various forms of 
the V,3Vp5 or V,3Vp3 pairs other than the 
consistent bias of V,3.1 usage in the CD4 
subset and of mutant V,3.1 in the CD8 
subset. Alternatively, the fact that the Vp5 
gene was derived from a class I-restricted 
cell and the V,3 chain from a class 11-. 
restricted cell G g h t  cause changes in the 
selection. (Because the oc and B chains 
came from' different cells, they 'have no 
predictable peptide specif~city.) When 
forced to pair with either Vp3 or Vp5, the 
various mutant forms of V,3.1 were all se- 
lected preferent~ally into the CD8 subset, 

V2.1  tg + B10 V,3.lm tg -+ B10 CDRlm tg+ 610 CDR2m tg +El0 

Fig. 3. CDRl and CDR2 sequences determine MHC class restriction. Expression of the Vm3 transgenes was 
compared in radiation bone marrow chimeras. The frequencres of Vm3.1 + or RR3-16+ cells in CD4 or CD8 
subsets of the donor-der~ved cells are shown. Data from two separate experiments were pooled. Data (mean 
5SD) from each experiment are as follows [CD4 cells, CD8 cells, P (Student's t test)]: Va3. 1 : 64.9 + 2.0, 28.5 
+ 2.5,P<0.01;Va3.1m(experiment 1): 20.8 + 1.3,41.0 ir 2.5,P<0.01;Va3.1m(experiment2): 6.5ir 0.3, 
17.3 ir 1.4, P < 0.01 ; CDRl m (experiment I ,  one mouse): 27.5, 39.5; CDRl m (experiment 2): 10.7 i 2.5, 
23.9 + 4.3, P = 0.01 ; CDR2m (experiment 1) :  9.6 ir 1.3,24.3 + 3.3, P < 0.03; and CDR2m (experiment 2): 
9.1 t 0.4, 14.2 ir 0.9, P < 0.02. Donor-derived cells from nontransgenic lrttermate controls reciprocally 
selected Va3.1 rnto the CD4 subset and RR3-16 in the CD8 population as expected (12). 

Fig. 4. Preferential selection of mu- 
tant Va3 rs not ~nfluenced by trans- A 80 80 

genic V,3 and VB5 chains. Mice an- 
alyzed were F, offspring derived by , 60 60 

mating the panel of Vm3 transgenic 
mice to VB3 or VB5 transgenic mice. $ 40 

40 
The MHC ha'plotypes were H-2b for .= 
theV85 cross and H-2b/kfortheVB3 2 

20 
cross. Only F, mice bearing both 
Va3V83 (A) or Vm3V85 (B) trans- 
genes are shown. Peripheral blood o V,3.1 v,3.lm c D R l m  CDR2m ' V,3.1 v,3.lm CDRlm CDR2m 

T cells were stained for three-color 
FACS analysls (24). The cells were gated on V83+ (A) or V,5+ (B) cells, and the percentage of cells 
positive for anti-Va3.1 (Va3.1 and CDR2m) or RR3-16 (Vm3.1 m and CDRl m) in CD4 (open bars) or CD8 
(cross-hatched bars) populations was determined. 

whereas the wild-type V,3.1 was skewed 
into the CD4 subset (Fig. 4 )  (24). There- 
fore, the' Vp5- or Vp3-chain element did 
not change the preference of the V,3 pro- 
teins for selection on class I or class 11. 

Our data demonstrate that a single amino 
acid residue present in either the CDRl or 
CDR2 regions of the V, element is sufficient 
to change selection from the CD4 (class 
11-restricted) to the CD8 (class I-restricted) 
subset. Skewed selection of V, can be ex- 
plained either by a better interaction be- 
tween a particular V, and class I or class I1 
molecules (5) or by preferential association 
with CD4 or CD8 coreceptors (25). The 
idea that a V, element could interact better 
with all molecules of one MHC class than 
with the other is feasible because potential 
TCR contact residues along the oc helices are 
remarkably conserved within MHC class, 
and there are significant structural differenc- 
es between class I and class I1 (26). There is 
some evidence that coreceptors interact with 
the TCR as well as with the MHC (27). 
Although V,3 has a motif associated with 
CD8 interaction (25), those residues are 
identical between V,3.1 and V,3.2 (13), 
which are selected into different subsets. The 
position of the residues that control selection 
of V,3 (in CDRs 1 and 2)  makes them 
unlikely to be involved in interactions with 
coreceptors, but likely to be involved in 
interactions with MHC (10, 11) .  Therefore, 
the changes in V, selection in the mutant 
transgenics are explained better by the in- 
teraction between the TCR and MHC (5) 
than by the coreceptor interaction model 
(25). These data, and the conservation of 
skewed selection across different MHC 
haplotypes (4-6), suggest that the orien- 
tation of the TCR-MHC interaction is 
fixed and conserved both within and be- 
tween MHC class. Polymorphism in V, 
CDRl and CDR2 is likely to result in 
biased usage of the various members of a 
V, family in class I- or class 11-restricted 
T cells, which could explain the mainte- 
nance of large families of closely related 
V, genes and the concentration of within- 
family diversity in the CDRs (28). 
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54, 247 (1 98811. Nomenclature follows (13) and B. F. 
Koop eta/. [Genomics 19, 478 (1 994)]. Ths a chain 
was used to raise the antiserum to V-3.1 (ant-V-3.1) 
and to generate V-3.1 transgenic mice (7). The 
monoclonal .pnt~body RR3-16 recognizes V,3.2 
(AV3S2) (8) The AV3S5J31 genomic clone was mu- 
tated by polymerase char  reaction overlap exten- 
sion [S. N. Ho, H. D. Hunt, R. M. Horton, J. K. Pullen, 
L. R. Pease, Gene 77, 51 (198911 and cloned into a 
genomic a-cha~n vector [V. Kouskoff, K. Signoreli, 
C. Beno~st, D. Mathis, J. Immunol. Methods 180, 
273 (1 995)l. Transgenc mce were generated at The 
Scripps Research Institute (TSRI) with FVB oocytes 
and backcrossed to C57BU6J (B6) mice. All anmals 
were treated n accordance with TSRI nstitut~onal 
gudelnes. 
Transgenic mice were screened by fluorescent-act- 
vated cell sort~ng (FACS) on peripheral blood ym- 
phocytes, gating on viable Thyl.2+ cells. The per- 
centage of Vm-expressng cells In CD4 or CD8 pop- 
ulations was determined. M~ce expresslng greater 
than threefold above the endogenous level of VUs 
were cons~dered transgenc. Ant~bodes were pur- 
chased from PharMngen (San D~ego, CA) unless 
otherwise stated. Biotinylated anti-V-3.2 (RR3-16) 
(8) and anti-V,2 (820 1) (6) were used with strepta- 
vidin-fluoresce~n isothiocyanate (FITC). Anti-V,3.1 
(7) was used w~th goat anti-rabbit (H+L)-FITC. 
Red613-conjugated anti-CD4 (HI 29 191, anti-CD8a 
(53-6.7), and anti-Thy1 2-PE (30-H12) were ob- 
tained from G~bco BRL (Grand Island, NY). 
The skew~ng pattern remained unchanged when an- 
alyzed as percent Vcy3+ cells expresslng CD4 or 
CD8. In the V,3 1 transgen~cs, 20.1 + 1.2% of 
V-3 1+ cells were CD8+ and 47.8 2 2.4% were 
Cb4+. In the V-3.1 m (lne 42) mlce, 63.0 f 6.9% of 
RR3-16+ cells were CD8+ and 14.9 +- 3.0% CD4+. 
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taned in wld-type B6 mice (12) Each Ine was sec- 
ond to fourth generation backcross to B6 All mice 
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cells were CD4+ and 36.3 2 3.2% CD8+. In CDR2m 
transgen~c mlce, 50.7 f 4.5% of Thyl + cells were 
CD4+ and 32.5 ? 5 7% CD8+. 

20. Expression of transgenic V-3 on CD4+CD8+, 
CD4+CD8-, and CD4-CD8+ thymocytes, respec- 
tlvey. V-3 1. 40.7, 43.4, and 39.0%; V,3.1m (line 7). 
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Protection Against Atherogenesis in Mice 
Mediated by Human Apolipoprotein A-IV 

Nicolas Duverger,* Gunter Tremp, Jean-Michel Caillaud, 
Florence Emmanuel, Graciela Castro, Jean-Charles Fruchart, 

Armin Steinmetz, Patrice Denefle 

Apolipoproteins are protein constituents of plasma lipid transport particles. Human 
apolipoprotein A-IV (apoA-IV) was expressed in the liver of C57BU6 mice and mice 
deficient in apoE, both of which are prone to atherosclerosis, to investigate whether 
apoA-IV protects against this disease. In transgenic C57BU6 mice on an atherogenic 
diet, the serum concentration of high density lipoprotein (HDL) cholesterol increased by 
35 percent, whereas the concentration of endogenous apoA-l decreased by 29 percent, 
relative to those in transgenic mice on a normal diet. Expression of human apoA-IV in 
apoE-deficient mice on a normal diet resulted in an even more severe atherogenic 
lipoprotein profile, without affecting the concentration of HDL cholesterol, than that in 
nontransgenic apoE-deficient mice. However, transgenic mice of both backgrounds 
showed a substantial reduction in the size of atherosclerotic lesions. Thus, apoA-IV 
appears toprotect against atherosclerosis by a mechanism that does not involve an 
increase in HDL cholesterol concentration. 

T h e  role of apoA-IV in lipid transport 
and lipoprotein metabolism is not clear. In 
humans,  apoA-IV is associated with tri- 
glyceride-rich lipoproteins and HDL, and 
also occurs in a lipoprotein-free form ( I -  
4).  ApoA-IV has been proposed to play a 
role in reverse cholesterol transport (cho- 
lesterol transport from tissues back to the 
liver for elimination) on  the basis of in 
vitro properties: It activates lecithin cho- 
lesterol acyltransferase (5,  6) ,  promotes 
cholesterol efflux from cholesterol-pre- 

loaded cells (7-9), and binds to hepato- 
cytes (10). 

T o  investigate the function of apoA- 
IV, we generated transgenic mice that ex- 
press human apoA-IV in the liver. T h e  
transgene comprised an 8.4-kb human 
genomic DNA fragment e n c ~ d i n g  apoA- 
IV linked to the 1.7-kb Pst I-Pst I frag- 
ment of the hepatic control region of the 
apoE/C-I gene ( I  I ) .  T h e  DNA fragment 
was injected into one-cell embryos of 
C57BL/6 mice (IFFA-Credo, Lyon, 
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