with buffer A containing 0.4 M NaCl, and proteins
were eluted with buffer A containing 65% ethylene
glycol. Fractions were diluted 1:10in buffer B (buffer A
with 0.1% Triton X-100) and incubated with Affi-Gel
blue gel (equilibrated in buffer A) for 90 min. The resin
was washed with buffer B, and proteins were eluted
with 0.75 M NaCl in buffer B. Fractions containing
protein were pooled and concentrated with Cen-
triprep 30 (Amicon), and the concentrate was diluted
with 10 volumes of buffer B and loaded on a Mono Q
column. Proteins were eluted with a linear NaCl gra-
dient (0 to 0.375 M) in buffer B, and column fractions
were assayed for CREB kinase activity (8). Fractions
with high CREB kinase activity were pooled, desalted
by size exclusion chromatography, and applied to a
Mono S column equilibrated in buffer B. Proteins were
eluted with a linear gradient of O to 0.375 M NaCl in
buffer B, and fractions were assayed for CREB kinase
activity. Peak fractions were then pooled and concen-
trated in a Céntricon-30, and proteins from the con-
centrated sample were separated on SDS-PAGE.
The CREB kinase band (identified with an in-gel ki-
nase assay) was excised and eluted from the gel by
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were pooled, concentrated, and subjected to SDS-
PAGE. The CREB kinase polypeptide was then trans-
ferred to a polyvinylidene difluoride membrane for pro-
tein digestion and peptide sequencing.

14. Protease digestion of purified CREB kinase with the
endoproteinase Lys-C, peptide isolation by high-
performance liquid chromatography, and peptide
sequencing were done by the Harvard Microchem-
istry Facility (Cambridge, Massachusetts). Sequenc-
es of four different peptides were obtained: EIAITH-
HVK, ISG_.DARQ_YAMK, L. YAFQTEGK, ATNMEF V
(25). These sequences matched 100% with those of
amino acids 49 to 57, 88 to 100, 133 to 142, and
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Control of MHC Restriction
by TCRV_CDR1 and CDR2

Bee-Cheng Sim, Loukia Zerva, Mark |. Greene,
Nicholas. R. J. Gascoigne*

Individual T cell receptor (TCR) V,, elements are expressed preferentially in CD4 or CD8
peripheral T cell subsets. The closely related V 3.1 and V_3.2 elements show reciprocal
selection into CD4 and CD8 subsets, respectively. Transgenic mice expressing site-
directed mutants of a V_3.1 gene were used to show that individual residues in either the
complementarity-determining region 1 (CDR1) or CDR2 were sufficient to change se-
lection from the CD4 subset to the CD8 subset. Thus, the germline-encoded V  elements
are a major influence on major histocompatibility class complex (MHC) restriction, most
likely by a preferential interaction with one or the other class of MHC molecule.

Thymocytes that are positively selected on
MHC class I proteins become peripheral
CD8™ cells and those positively selected on
MHC class II proteins become CD4* pe-
ripheral T cells (I). An af TCR transgene
from a CD8% T cell causes most T cells
bearing that receptor to be positively select-
ed into the CD8* compartment (2), whereas
a transgenic TCR from a CD4™" cell shows
similarly skewed expression in the CD4*
population (3). Less extreme skewing into
the CD4 or CD8 peripheral T cell subset is
also seen with individual V regions—most
noticeably with V regions, which are pref-
erentially expressed in one or the other sub-
set (4-9). This phenomenon is largely inde-
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pendent of MHC haplotype and suggests
either that individual V regions react pref-
erentially with class I or class Il molecules or
that particular V, regions associate with the
CD4 or CD8 coreceptors.

The structure of the TCR V, domain has
recently been determined (10). The CDR3
segments of TCR V,, and V; [produced by V]
or V(D)] recombination, respectively] are pre-
dicted to lie centrally in the combining site of
the TCR (10, 11). If CDR3 interacts with the
peptide bound in the MHC groove, the less
variable germline-encoded CDRI- and
CDR2-equivalent regions would be available
to interact with the MHC « helices. Thus,
the skewed expression of V elements in CD4
and CD8 subsets suggests that the CDR1 and
CDR2 of V,, could play a role in distinguish-
ing between class I and II. Closely related
members of the V3 family undergo selec-
tion by different MHC classes (7, 8), allow-
ing determination of the residues involved in
MHC class discrimination. In B6 mice,
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V. 3.1 is expressed predominantly in CD4
peripheral T cells (6.3 = 0.7% versus 2.4 =
0.8% in CD8), whereas V3.2 is expressed
mainly in CD8 cells (3.6 *+ 0.2% versus
0.9 = 0.1% in CD4) (7, 8, 12). A compar-
ison of the sequences of V 3.1 and V 3.2
showed that four amino acid residues (at
positions 27, 51, 85, and 92) differ between
them (8, 13). Two out of the four differences
lie within the CDR1 and CDR2. Thus, res-
idue 27 (CDR1) and residue 51 (CDR2) are
candidates for interaction with the a helices
of the MHC molecules. The equivalent po-
sitions in V_4 have side chains pointing out
of the structuid (10). Residue 85 lies at the
base of B strand F and is slightly solvent-
exposed. It could potentially be available to

30 T 50 50

interact with the coreceptor molecules. Res-
idue 92 is buried and is not part of CDR3.
To determine if the residues differing be-
tween V 3.1 and V_3.2 control selection on
MHC class I or II, we altered a wild-type
V3.1 gene to resemble V 3.2 by making the
mutations Ser?’—Phe (S27F), S51P, and
S85W (14) and producing transgenic lines
(15, 16). The wild-type V 3.1 transgene
showed skewed expression in the CD4 subset
(Fig. 1) (7). In contrast, three independent
lines carrying the mutant « chain (V 3.1m)
showed skewed expression in the CD8 subset
(17). The V_3.2-specific monoclonal anti-
body RR3-16 reacts with the V_3.1m trans-
gene (18). The CD8/CDA4 ratio of expression
of the V 3.1m transgene ranged from 5.7 to

Fig. 1. (A) Three mutations A 80 5
in the V3.1 gene are suf- oam oa a

ficient to change class | 60- a - . 40+ 40+ A0
and class Il selection. & S | w201 o a
Comparison of V 3 ex- * g 5 301 a 30

pression in mice trans- ¢ 40 3 . v
genic for V3.1 and in % €,0d0n 01 207

three independent V_3.1m 204 o o . 1o

lines (15, 16). Symkols Qma
represent individual trans- o 0 0 o M

genic mice. Al three cpba  cDs cD4 CD8  CD4 CD8  CD4 CD8
V,3.1m transgenic lines Va3itg Va3.Imtgline7 Vy3.1mtgline23 Vq3.1m tg line 42
(lines 7, 23, and 42)

showed a higher percentage of V_ 3.1min the CD8™" population [line 7 (mean + SD): 25.3 + 2.5%
of CD8* and 9.9 * 2.5% of CD4™* (P < 0.001); line 23: 33.5 + 6.3% and 15.9 * 4.0% (P <
0.001); and line 42: 37.6 * 7.6% and 6.6 * 1.9% (P < 0.001)]. In contrast, V_3.1 showed
reciprocal selection into the CD4 subset [71.0 =
population (P < 0.001) (77, 18)]. (B) Staining pattern for transgenic V3.1 and V_3.1min the CD8

3.5% versus 51.0 = 5.6% in the CD8™"

and CD4 subsets of Thy1* cells. The frequencies of V 3.1 (anti-V,3.1*) or V_,3.1m (RR3-16*)
(18) cells in the CD8 or CD4 population in the V3.1 transgenic mice (top panels) or V 3.1m transgenic mice (bottom panels) are shown.
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2.1. In both V,3.1 and V_3.1m transgenic
mice, TCR V_2 remained skewed into the
CDA4™" cells (6), indicating that this phenom-
enon was limited to the transgenic o chain
(12). Therefore, the three mutations created
in the V_3.1 gene were sufficient to change
selection from CD4 into the CD8 subset.
We tested the CDR1 and CDR2 poly-
morphisms separately with transgenic mice
in which the V 3.1 gene was mutated to the
V3.2 sequence only in CDR1 (CDRlm;
S27F) or CDR2 (CDR2m; S51P). All three
of the CDRIm transgenic lines overex-
pressed CDRIm in the CD8 subset with a
CD8/CD#4 ratio of 2 to 3 (Fig. 2, A and B)
(18, 19). Similarly, CDR2m was expressed
predominantly in the CD8 subset (Fig. 2, C
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versus 123 * 1.8% (P <

0.001); and line 28: 16.7 =
2.7%versus 5.5+ 2.1% (P <
0.001)]). Both CDR2m trans-
genic lines showed similarly
skewed expression in CD8™*
line 44, 52.7 + 6.4% versus
156 = 2.6% in CD4 (P <

100

107 102

0.001); and line 60: 37.8 * 5.6% versus 20.8 * 7.7% (P = 0.002)]. An alternative
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method for calculating the skewed expression gave similar results (79). An ex-  Thy1.2*CD8" and Thy1.2*CD4* subsets.
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and D) with a CD8/CD#4 ratio of 3.4 for line
44 and 1.8 for line 60 (19). Therefore,
either of the single-amino acid substitu-
tions in the CDR1 or CDR2 region of the
V3.1 gene was sufficient to alter its selec-
tion from a predominantly class Il-restrict-
ed to a predominantly class I-restricted
phenotype. As before, selection of V2 was
unaffected (12). No clear difference in the
strength of selection was noted between
CDR1 or CDR2 regions.

Because skewing of other V elements ap-
pears to be caused by positive selection (4-6),
we stained thymocytes for expression of the
V,3 proteing. in the CD4, CD8-defined sub-
sets (20). These showed a pattern consistent
with increased positive selection into the rel-
evant mature subset, although increased neg-
ative selection in the other cannot be ruled
out. Bone marrow chimeras made with the
panel of V, transgenic mice (21) showed that
preferential expression of the V3 transgenes
in peripheral CD4 or CD8 cells was deter-
mined by the genetic origin of the bone mar-
row cells (Fig. 3). In the same thymic envi-
ronment, the T cells bearing mutant forms of

V3.1 (V,3.1m, CDRIm, and CDR2m) were
\

all selected preferentially into the CD8 subset,
whereas the wild-type V 3.1 transgene was
skewed into the CD4 subset.

It is possible that the altered selection of
V., is caused by changes in TCR «f pairing
(22). Therefore, we investigated the partic-
ipation of the B chain in the observed
skewed expression of the various forms of
V3.1 by breeding the panel of V_ trans-
genic mice with Vg5 and V3 transgenic
mice (23). If there is no B chain effect on
the V, skewing, the resultant first genera-
tion mice will not be expected to show
selection for or against the various forms of
the V,3Vg5 or V,,3V,3 pairs other than the
consistent blaS of V., 3 1 usage in the CD4
subset and of mutant V_ 3.1 in the CD8
subset. Alternatively, the fact that the Vg5
gene was derived from a class I- resmcted

cell and the Vi3 chain from a class II—

restricted cell mlght cause changes in the
selection. (Because the a and B chains
came from different cells, they have no
predictable peptide specificity.) When
forced to pair with either Vg3 or V5, the
various mutant forms of V3.1 were all se-
lected preferentially into the CD8 subset,

80 50 50 30
. % )
40 40+ a
_ 60- 1 ° . o
g g g & 204
i. + 304 4+ 309 o a '+_
5 407 e e 5 A
et 2 2 gl 3 °
2 al o7 g B0 ]
c -
< t a < 107 a0g
207 101 104§
Avon
O T 0 T T 0 T T 0 T T
cb4 cbs Cb4 CD8 cD4 cbs cb4  CD8
Vo3.1tg —»-B10 Vo3.1mtg —p- B10 CDR1m tg—% B10 CDR2m tg —»B10

Fig. 3. CDR1 and CDR2 sequences determine MHC class restriction. Expression of the V3 transgenes was
compared in radiation bone marrow chimeras. The frequencies of V 3.1* or RR3-16" cells in CD4 or CD8
subsets of the donor-derived cells are shown. Data from two separate experiments were pooled. Data (mean
+8D) from each experiment are as follows [CD4 cells, CD8 cells, P (Student’s t test)]: V 3.1:64.9 + 2.0, 28.5
+2.5,P<0.01;V_3.1m(experiment 1): 20.8 £ 1.3,41.0 = 2.5, P < 0.01; V_3.1m (experiment 2): 6.5 + 0.3,
17.3 £ 1.4, P < 0.01; CDR1m (experiment 1, one mouse): 27.5, 39.5; CDR1m (experiment 2): 10.7 + 2.5,
23.9 + 4.3, P = 0.01; CDR2m (experiment 1): 9.6 * 1.3, 24.3 = 3.3, P < 0.03; and CDR2m (experiment 2):
9.1 £ 0.4, 142 = 0.9, P < 0.02. Donor-derived cells from nontransgenic littermate controls reciprocally
selected V3.1 into the CD4 subset and RR3-16 in the CD8 population as expected (72).
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Fig. 4. Preferential selection of mu- A

tant V_3is not influenced by trans- 801
genic Vg3 and V5 chains. Mice an-

alyzed were F, offspring derived by . 604 T-
mating the panel of V3 transgenic & 1
mice to Vg3 or V5 transgenic mice. % 40 4

The MHC haplotypes were H-2° for ,>:_ I
the Vg5 crossand H-2%forthe V3 <, |
cross. Only F, mice bearing both

V,3Vg3 (A) or V,3V,5 (B) trans-

genes are shown. Peripheral blood Vo3

T cells were stained for three-color

Ve3.1m CDR1m CDR2m Vo31 Vo3.1m CDRim CDR2m

FACS analysis (24). The cells were gated on V3" (A) or V5" (B) cells, and the percentage of cells
positive for anti-V 3.1 (V3.1 and CDR2m) or RR3 16 (V, 3. 1mand CDR1m)in CD4 (open bars) orCD8

(cross-hatched bars) populations was determined.
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whereas the wild-type V 3.1 was skewed
into the CD4 subset (Fig. 4) (24). There-
fore, the’ Vgd- or Vg3- chain element did
not change the preference of the V_3 pro-
teins for selection on class I or class 1.
Our data demonstrate that a single amino
acid residue present in éither the CDR1 or
CDR2 regions of the V element is sufficient
to change selection from the CD4 (class
[I-restricted) to the CD8 (class [-restricted)
subset. Skewed selection of V can be ex-
plained either by a better interaction be-
tween a particular V and class I or class 11
molecules (5) or by preferential association
with CD4 or CD8 coreceptors (25). The
idea that a V_ element could interact better
with all molecules of one MHC class than
with the other is feasible because potential
TCR contact residues along the a helices are
remarkably conserved within MHC - class,
and there are significant structural differenc-
es between class [ and class Il (26). There is
some evidence that coreceptors interact with
the TCR as well as with the MHC (27).
Although V_3 has a motif associated with
CD8 interaction (25), those residues are
identical between V 3.1 and V 3.2 (13),
which are selected into different subsets. The
position of the residues that control selection
of V.3 (in CDRs 1 and 2) makes them
unlikely to be involved in interactions with
coreceptors, but likely to be involved in
interactions with MHC (10, 11). Therefore,
the changes in V selection in the mutant
transgenics are explained better by the in-
teraction between the TCR and MHC (5)
than by the coreceptor interaction model
(25). These data, and the conservation of
skewed selection across different MHC
haplotypes (4—6), suggest that the orien-
tation of the TCR-MHC interaction is
fixed and conserved both within and be-
tween MHC class. Polymorphism™in V
CDR1 and CDR2 is likely to result in
biased usage of the various members of a
V,, family in class I- or class II-restricted
T cells, which could explain the mainte-
nance of large families of closely related
V, genes and the concentration of within-

family diversity in the CDRs (28).
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Protection Against Atherogenesis in Mice
Mediated by Human Apolipoprotein A-IV
Nicolas Duverger,” Gunter Tremp, Jean-Michel Caillaud,

Florence Emmanuel, Graciela Castro, Jean-Charles Fruchart,
Armin Steinmetz, Patrice Denéfle

Apolipoproteins are protein constituents of plasma lipid transport particles. Human
apolipoprotein A-IV (apoA-IV) was expressed in the liver of C57BL/6 mice and mice
deficient in apoE, both of which are prone to atherosclerosis, to investigate whether
apoA-IV protects against this disease. In transgenic C57BL/6 mice on an atherogenic
diet, the serum concentration of high density lipoprotein (HDL) cholesterol increased by
35 percent, whereas the concentration of endogenous apoA-| decreased by 29 percent,
relative to those in transgenic mice on a normal diet. Expression of human apoA-I1V in
apoE-deficient mice on a normal diet resulted in an even more severe atherogenic
lipoprotein profile, without affecting the concentration of HDL cholesterol, than that in
nontransgenic apoE-deficient mice. However, transgenic mice of both backgrounds
showed a substantial reduction in the size of atherosclerotic lesions. Thus, apoA-IV
appears to protect against atherosclerosis by a mechanism that does not involve an

increase in HDL cholesterol concentration.

The role of apoA-IV in lipid transport
and lipoprotein metabolism is not clear. In
humans, apoA-1V is associated with tri-
glyceride-rich lipoproteins and HDL, and
also occurs in a lipoprotein-free form (I1—
4). ApoA-IV has been proposed to play a
role in reverse cholesterol transport (cho-
lesterol transport from tissues back to the
liver for elimination) on the basis of in
vitro properties: It activates lecithin cho-
lesterol acyltransferase (5, 6), promotes
cholesterol efflux from cholesterol-pre-
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loaded cells (7-9), and binds to hepato-
cytes (10).

To investigate the function of apoA-
IV, we generated transgenic mice that ex-
press human apoA-IV in the liver. The
transgene comprised an 8.4-kb human
genomic DNA fragment encading apoA-
IV linked to the 1.7-kb Pst I-Pst I frag-
ment of the hepatic control region of the
apoE/C-1 gene (11). The DNA fragment
was injected into one-cell embryos of

C57BL/6  mice (IFFA-Credo, Lyon,





