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tissues within the elongation zone to under- 
go differential growth, leading to correc- 
tional bending (7). IAA regulates gravity- 
induced root curvature by acting as an in- 
hibitor of root cell elongation, but the 
mechanism of IAA action remains contro- 
versial (7). We used an Agrobacterium-me- 
diated transferred DNA (T-DNA) tagging 
procedure in Arabidopsis (8) to isolate and 
characterize the AUXl gene, the product of 
which mediates the hormonal control of 
root gravitropism. The AUXl polypeptide 
exhibits sequence similarity to a family of 
plant and fungal amino acid permeases, sug- 
gesting that AUXl mediates the transport 
of an amino acid-like signaling molecule. 

An agravitropic root mutant, auxl-100, 
allelic with the auxl mutation (9, lo) ,  was 
isolated from an Arabidopsis population mu- 
tagenized by T-DNA (11). The auxl-100 
mutant also exhibited an altered thigmo- 
tropic growth response similar to that de- 
scribed for the auxl allele w a d  (1 2). The 
auxl-100 mutation, like other auxl alleles 
(9, lo) ,  confers a reduced sensitivity to the 
exogenously applied synthetic auxin 2,4-D 
[(2,4-dichlorophenoxy)acetic acid] (13). 

The T-DNA insert cosegregating with 
the recessive auxl-100 phenotype (14) 
sewed as a molecular marker for the putative 
AUXl locus. A genomic DNA fragment 
bordering the auxl-100 T-DNA insert was 
isolated by plasmid rescue (1 5,  16) and used 
to obtain a homologous cosmid clone, 20-1-1 
(1 7). Restriction fragment length polymor- 
phism (RFLP) analysis (18), with an Arabi- 
dopsis recombinant-inbred mapping popula- 
tion and a probe derived from 20-1-1, veri- 
fied the linkage between the T-DNA insert 
and the AUXl gene on chromosome 2. 

We isolated cDNA clones encoded by a 
single gene from an Arabidopsis cDNA li- 
brary with probes from 20-1-1 (19). The 
longest cDNA, 1988 base pairs (bp) in 
length, encoded a full-length transcript 
(19). Sequence analysis identified nine ex- 
ons and eight introns within the transcribed 
gene (Fig. 1) (20). The first exon, although 
featuring a short open reading frame, en- 
codes only 5' untranslated sequence. Exons 
two through nine collectively contain a 
single large open reading frame. The lesions 
of four auxJ alleles were identified within 
the gene sequence (Fig. 1) (21 ). 

We confirmed the identity of the AUXJ 
gene by performing complementation of the 
auxl-7 allele. Two genomic fragments that 
encompassed the entire open reading frame 
and included either 0.5 or 3.5 kbp of the 
upstream promoter sequence (Fig. 1) were 
subcloned into an Agrobacterium binary 
vector and transformed into auxl -7 plants 
(22). Among the progeny of six indepen- 
dent auxl-7 transformants, either AUXl 
gene fragment could complement the aux- 

Fig. 1. Map of the AUXl gene. The ( - 4 0 ~ )  (-945) (0) , l.21 (3293) (-) 

structure of the AUXl gene is ECO RV ATG GCAAC-GCAC T-DNA TGA Bam HI 

shown to scale, with black boxes 
I 

representing exons. The positions 
+L 

of the initiation and termination c ~ ~ g t a - c ~ ~ g a a  GGT-GAT 
1.0 kb aux 1-22 aux 1-7 

codons of the predicted AUXl 
open reading frame are signified by ATG and TGA, respectively. The nucleotide sequence has been 
submitted to the EMBL database (20). Nucleotide sequence changes have been described for four auxl 
alleles (exon and intron sequences are in upper and lower case letters, respectively) as follows: A823 is 
deleted in auxl-21; a change from t939 to a939 in auxl-22 alters the 5' intron splice site consensus; there 
is a T-DNA insertion downstream of T2118 in auxl-100; and G3214 is changed to A3214 in auxl-7, 
resulting in a GlylS9 to missense amino acid substitution. 

in-resistant auxl root-growth phenotype 
(Fig. 2). In contrast to the auxl-7 pheno- 
type, transgenic auxl-7 roots expressing the 
cloned AUXl gene failed to elongate in the 
presence of the synthetic auxin 2,4-D at 
levels that normally inhibit wild-type root 
growth (Fig. 2). The AUXl transgene could 
also complement the root agravitropic and 
athigmotropic phenotypes (23). 

The AUXl gene (Fig. 1) encodes a 
polypeptide of 485 amino acids with a pre- 
dicted molecular mass of 54.1 kD. Database 
searches (24) with the AUXl amino acid 
sequence have identified similarity with sev- 
eral sequences from Caenurwt is  ekgans, 
fungi, and plants (up to a smallest sum prob- 
abilitv value of 2.5 x lop8). The seauences 
of known function share a common bio- 
chemical activitv-amino acid transvort- 
and comprise a family of sequence-related 

amino acid permeases from Arabtdopsis , Nico- 
tiana, and Neurospura, ranging from 470 to 
493 amino acids in length (25). Both AUXl 
and the related Arnbidopsis AAPl amino acid 
permease are predicted to contain between 10 
and 12 transmembrane-spanning helices (25, 
26); when aligned, the AUXl and AAPl 
sequences demonstrate 21% identity and 48% 
similarity (24) and are essentially colinear 
along their entire length (Fig. 3). The simi- 
larities suggest that AUXl mediates the trans- 
port of an amino acid-like signaling molecule. 
The plant hormone IAA, which is structurally 
similar to the amino acid tryptophan, is a 
likely substrate. Plant cells mediate IAA up- 
take by cotransport of IAA anions and pro- 
tons, whereas the efflux carrier transports 
IAA anions (27). Mechanistically, plant ami- 
no acid permeases function as proton-driven 
symporters (28), suggesting that AUXl may 

Fig. 2. (left) Molecular complemen- 485 
tation of theauxl-7allele. A 7.5-kbp 465 485 

Xho I-Barn HI DNA fragment (see 
Fig. 1) encoding the AUXl gene was transformed into the auxl-7 genetic background (22). Four-day-old 
wild-type, auxl-7, and transgenicauxl-7 seedlings (left to right) were transferred to plates containing 5 x 
lo-' M 2,4-D to assay auxin-mediated inhibition of root growth (9, 10). The 7.5-kbp fragment restored a 
wild-type level of sensitivity to the synthetic auxin 2,4-D within theauxl-7genetic background. Fig. 3. 
(right) Amino acid sequence conservation between AUX1 and the related amino acid permease AAP1 
(38). The Arabidopsis AUXl (upper) and AAPl (lower) sequences were optimally aligned. Residues are 
boxed to indicate amino acid identity (shaded) or functional conservation (open). 
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behave in an equivalent fashion to mediate 
proton-driven IAA uptake. Candidate IAA 
carriers have been identified with photoaffin- 
ity labeling techniques (29). 

Auxin transport is often associated with 
gravitropism, particularly because inhibitors 
of auxin transport can abolish gravitropic 
bending (30). Two auxin transport streams 
have been identified in roots (31 ): an acro- 
petal IAA transport stream associated with 
the central root tissues and a basi~etal IAA 
transport stream localized to the epidermal 
tissue. Hasenstein and Evans (32) proposed 
that root gravitropic curvature is mediated 
by the asymmetric redistribution of IAA dur- 
ing basipetal transport away from the root tip 
to the cells of the elongation zone. Using a 
whole-mount in situ hybridization technique 
(33) ,  we showed that AUXl expression is 
associated with the root a~ ica l  tissues that 
control the root gravitropic response (Fig. 4). 
Furthermore. we observed that AUXl is ex- 
pressed preddminantly within root epidermal 
cells (34), thus underlining the close associ- 
ation between AUXl expression and basipe- 
tal auxin transport. 

The relative importance of asymmetric 
changes in auxin concentration compared 
with tissue sensitivity during gravitropic cur- 
vature remains unclear (7). Apparent asym- 
metric tissue sensitivity may in fact reflect 
differential rates of IAA uptake by elongat- 
ing cells on opposite sides of a gravistimu- 
lated organ. Regulating auxin uptake would 
thus be important, a view supported by re- 
cent studies in maize in which intracellular 
auxin concentration and growth rate were 
correlated (35). Experiments designed to 
block the auxin efflux carrier in roots result 
in reduced rates of growth (30), perhaps 
reflecting intracellular auxin accumulation. 
In contrast, inhibition of auxin uptake 

an~rabido~sis seedling. Two-day-old Arabidop- 
sis seedlings were hybridized with either (A) anti- 
sense or (6) sense strand specific AUXl digoxy- 
genin-labeled RNA probes through use of a 
whole-mount in situ hybridization procedure (33). 
AUXl mRNA, visualized by strong purple colora- 
tion, is specifically localized within the root apex. 

would deplete intracellular auxin levels, 
thus increasing the rate of root growth. The 
identical phenotype of the auxl mutant (36) 
provides further evidence that AUXl func- 
tions in IAA uptake. Permease-based signal- 
ing mechanisms may prove to be of general 
importance to other auxin-regulated growth 
processes, particularly because AUXl be- 
longs to a family of closely related sequences 
in Arabhpsis that are likely to have related 
biochemical activities (37). 
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