duction in receptor density (Fig. 2), or from a
combination of these effects. Our results and
those of Link et al. (11) indicate that subtype-
selective ligands might provide a therapeutic
advantage in the treatment of hypertension.
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ulating cardiovascular function. The role of specific a,AR subtypes (o,,, oy, and a,,)
was characterized with hemodynamic measurements obtained from strains of geneti-
cally engineered mice deficient in either o, or o, receptors. Stimulation of a,,,, receptors
in vascular smooth muscle produced hypertension and counteracted the clinically ben-
eficial hypotensive effect of stimulating «,, receptors in the central nervous system.
There were no hemodynamic effects produced by disruption of the a,_ subtype. These
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arc. a,ARs located in the brain stem are
targets for antihypertensive therapy because
stimulation of these receptors produces a
long-lasting drop in systemic blood pressure.
Paradoxically, stimulation of o, ARs on ar-
terial smooth muscle cells increases blood
pressure by increasing vascular resistance.
Three subtypes of 0,AR (a,,, a,,, and o)
have been isolated and share a high degree
of structural similarity (50 to 60% identity).
All these receptors couple to the inhibitory
heterotrimeric GTP-binding protein (G,)
and inhibit adenyl cyclase. The three
a,ARs differ, however, in their patterns of
tissue expression (1). Little is known about
the role of the three a,AR subtypes in
cardiovascular physiology. Studies have
been hampered both by the lack of subtype-
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selective a,AR drugs and by cross-reactiv-
ity of «,AR ligands with other receptors
such as a;ARs and the recently defined
imidazoline-preferring sites (I, and I,) (2).
As an alternative approach, we have gen-
erated lines of knockout mice deficient in
either the a,, or a,, subtype and measured
the hemodynamic responses of these mu-
tants to stimulation by a,-selective ago-
nists. Our results, together with those of
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—[— +/— +/+
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of
mice (22, 23). (A) Protein immuno-
blot analysis of kidney membranes from
Adra2b*/Adra2b™, Adra2b*/Adra2b, and
Adra2b~/Adra2b~ mice (24). The genoctype
of each animal and the position of the nonglycosylated Adra2b protein are shown. (B) Competition of
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MacMillan et al. (3), demonstrate that
stimulation of a,, receptors counteracts
the therapeutic antihypertensive effect of
drugs acting at a,, receptors in the central
nervous system.
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Adra2c) that encode homologs of the hu-
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mice by gene targeting in murine embry-
onic stem cells (6). Despite their deficien-
cy in the a, receptor subtype, adult
AdraZc™[Adra2c™ mice are viable, fertile,
and appear grossly normal. We used a
similar strategy to generate mice lacking a
functional copy of the AdraZb gene, which
encodes the murine a,, pharmacologic
subtype. Viable Adra2b™[Adra2b~ mice
were recovered from heterozygote inter-
crosses and were fertile and appeared
grossly normal. However, significantly
fewer Adra2b™/Adra2b™ animals were pro-
duced from these crosses than predicted by
Mendelian ratios (7). Protein immunoblot
and ligand-binding studies confirmed the
absence of oy, expression in Adra2b~/
Adra2b™ mice (Fig. 1). These results dem-
onstrate that the a,, receptor is not abso-
lutely required for embryonic develop-
ment or for adult survival.

In humans and other species, the blood
pressure response to the intravenous admin-
istration of an a, agonist is biphasic (8-10).
During the initial phase, mean arterial
blood pressure rises transiently as arterial
a,ARs constrict vascular smooth muscle
(10, 11). After the initial hypertensive re-
sponse, mean blood pressure drops below
baseline because a,ARs in the ventrolateral
medulla oblongata attenuate sympathetic
and accentuate parasympathetic outflow
(12).

To explore the role of specific a,AR
subtypes in regulating these hemodynamic
properties, we measured real-time mean
blood pressure and heart rate in unre-
strained, conscious animals by using an
intra-aortic catheter connected to a pres-
sure transducer (13). Disruptions of the
Adra2c or Adra2b gene did not result in a
significant change in mean arterial pres-
sure or heart rate at baseline. To examine
the hemodynamic response to o, agonists,
we administered dexmedetomidine (5 pg
per kilogram of body weight) through the
catheter as a bolus. Dexmedetomidine is a
highly selective agonist at the a, subtype
(14, 15). The arterial blood pressure re-
sponse to dexmedetomidine in wild-type
mice (16) was biphasic. We observed an
immediate hypertensive response, fol-
lowed by a long-lasting (>>60 min) drop in
mean arterial pressure to below its original
value (Fig. 2, A and B). Dexmedetomidine
also caused an immediate bradycardia (Fig.
2, C and D).

In contrast, no hypertensive response
to dexmedetomidine was observed in
Adra2b™[Adra2b™ mice. Rather, the hypo-
tensive response occurred immediately
and was significantly greater than that
observed for control animals (Fig. 2, A
and E). The bradycardic response to
dexmedetomidine, however, did not differ



significantly between Adra2b™/Adra2b™
and control mice (Fig. 2C). Adra2b~/
Adra2b™ mice had a normal hypertensive
response to challenge with a nonselective
o, agonist (0.1 pg of phenylephrine
per kilogram of body weight) (17), con-
firming that resistance vessels in Adra2b~/
Adra2b™ mice are capable of a normal
vasoconstrictive response to o; AR stimu-
lation. We observed no significant differ-
ence between Adra2c”/Adra2c™ and con-
trol mice in the magnitude of the
hypertensive, hypotensive, or bradycardic
responses to agonist (Fig. 2, B, D, and
F).

Our results show that the central hypo-
tensive response to o, agonists is not medi-
ated by the a,, or o, subtypes. This re-
sponse is lost after a subtle mutation of the
a,, subtype in vivo (3). These observations
strongly implicate the a,_ subtype in the
control of central sympathetic outflow. The
major component of the a,-agonist-in-
duced increase in systemic blood pressure
appears to be mediated by a,, receptors.
The magnitude of the long-lasting hypoten-
sive response to an a, agonist in Adra2b~/
Adra2b™ mice was also significantly greater
than that in control animals. This finding
suggests that the magnitude of hypotension
seen with circulating “central” o, agonists
such as clonidine. actually represents the
summation.of central and peripheral effects.
It may be possible, therefore, to enhance
the therapeutic potency of «, agonists as
antihypertensive drugs by developing com-
pounds with a lower relative affinity for the
a,, subtype.
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