
duction in receptor density (Fig. 2), or from a 
combination of these effects. Our results and 
those of Link etal. (11) indicate that subtype-
selective ligands might provide a therapeutic 
advantage in the treatment of hypertension. 
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arc. a2ARs located in the brain stem are 
targets for antihypertensive therapy because 
stimulation of these receptors produces a 
long-lasting drop in systemic blood pressure. 
Paradoxically, stimulation of a2ARs on ar­
terial smooth muscle cells increases blood 
pressure by increasing vascular resistance. 
Three subtypes of a2AR (a2a, a2b, and a2c) 
have been isolated and share a high degree 
of structural similarity (50 to 60% identity). 
All these receptors couple to the inhibitory 
heterotrimeric GTP-binding protein (G{) 
and inhibit adenyl cyclase. The three 
a2ARs differ, however, in their patterns of 
tissue expression (1). Little is known about 
the role of the three a2AR subtypes in 
cardiovascular physiology. Studies have 
been hampered both by the lack of subtype-
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selective a,AR drugs and by cross-reactiv- 
ity of a,AR ligands with other receptors 
such as alARs and the recently defined 
imidazoline-preferring sites ( I ,  and I,) (2). 
As an alternative approach, we have gen- 
erated lines of knockout mice deficient in 
either the aZh or aZc subtype and measured 
the hemodynamic responses of these mu- 
tants to stimulation by a2-selective ago- 
nists. Our results, together with those of 

MacMillan et al. (3) ,  demonstrate that 
stimulation of aZh receptors counteracts 
the therapeutic antihypertensive effect of 
drugs acting at a,;l receptors in the central 
nervous system. 

Three a2AR genes have been isolated 
in the mouse (AdraZa, AdraZb, and 
AdraZc) that encode homologs of the hu- 
man a,,, aZh, and a,, receptor subtypes 
(4, 5). We produced AdraZc-lAdra2c- 

mrr- 
200 - 
97 - 
69 - 
46 - 

4Adra2b 
40 

30 - x 
t 20 
0 

Fig. 1. Lnaracterization of Adra2b-/ 
Adra2b mice (22, 23). (A) Protein immuno- 
blot analysis of kidney membranes from -9 -8 -7 -6 -5 - 4  

AdraPb'IAdra2b +, Adra2b +/Adra2b - , and log[Prazosin (M)] 

Adra2b-lAdra2b mice (24). The genotype 
of each animal and the position of the nonglycosylated Adra2b protein are shown. (6) Competition of 
I'HIyohimbine binding to kidney membranes from Adra2b+/Adra2b ' (C) and Adra2b-/Adra2b (.) 
mice by prazosin (25). Each point represents the mean (t SE) derived from three mice. Specific t ~ ,  

receptor binding in kidney membranes of Adra2b-/Adra2b mice was decreased to 62Oh of that In 
membranes from control mice. Competition binding experiments revealed two prazosin-sensitive bind- 
ing sites in Adra2b+/Adra2b ' mice, a high-affinity site (0.58 nM; 24% of binding) and a low-affinity site 
(>750 nM; 76% of binding). The high-affinity prazosin-sensitive a,AR site (a,, subtype) was absent in 
membranes from Adra2b/Adra2b mtce. 

Fig. 2. Representative he- 
modynamic measurements 
for control (gray symbols), - 9 140 
Adra2b-/Adra2b- (f~lled g 

120 
squares), and Adra2c-/ 6 -  
Adra2c- (filled c~rcles) mlce 5 loo I 
(73). Representat~ve trac- ! I 11 

Inas of mean arter~al blood ' 100 

pressure (A and 6) and 
heart rate (C and D) (? SE) 

6 0 1  8 0 1  
-5 0 5 10 152025303540 -5 0 5 10 152025303540 

Time (min) Time (min) 
after admlnistrat~on of 700 700 
dexmedetom~dne. At tlme -,,, 

600 0, a bolus of dexmedetoml- g g 500 dlne (5 pglkg) was adrnm- ; 4w 
500 

lstered through the arter~al , , 400 

catheter. No response '300 300 

was observed after injec- 
-5 0 5 10152025303540 -5 0 5 10152025303540 tion of vehicle alone. Blood Time lminl Time lminb 

pressure and heart rate re- 
sponses were attenuated 
by first treating with the a,- 
selective antagonist atipa- 
mezole (9, 15, 26). (E and 
F) Maximal arterial pres- 
sure changes observed 
during the hypertensive 

. . 

Max hypotenslve 

effect 

-40 

and hypotensive phases of -60 

the response to dexme- 
detomidine. Data were derived independently from 7 AdraPb+/Adra2b+ and 7Adra2b-/Adra2b- mice 
[shown in (E ) ]  and 7 Adra2c+/Adra2c+ and 1 0Adra2c-/Adra2c- animals [shown in (F)]. Error bars are 
SEs; values significantly different from appropriate controls are denoted by an asterisk (P < 0.05, 
unpaired Student's t test). 

mice by gene targeting in murine embry- 
onic stem cells (6). Des~ i t e  their deficien- . . 
cy in the a,, receptor subtype, adult 
AdraZc-IAdraZc- mice are viable, fertile, 
and appear grossly normal. We used a 
similar strategy to generate mice lacking a 
functional copy of the AdraZb gene, which 
encodes the murine aZh pharmacologic 
subtype. Viable AdraZb-lAdra2b- mice 
were recovered from heterozygote inter- 
crosses and were fertile and a ~ ~ e a r e d  * .  

grossly normal. However, significantly 
fewer AdraZb-lAdra2b- animals were pro- 
duced from these crosses than predicted by 
Mendelian ratios (7). Protein immunoblot 
and ligand-binding studies confirmed the 
absence of aZh expression in AdraZb-l 
Adra2b- mice (Fig. 1). These results dem- 
onstrate that the a,, receptor is not abso- 
lutely required for embryonic develop- 
ment or for adult survival. 

In humans and other species, the blood 
pressure response to the intravenous admin- 
istration of an a, agonist is biphasic (8-10). 
During the initial phase, mean arterial 
blood pressure rises transiently as arterial 
a,ARs constrict vascular smooth muscle 
(10, 11 ). After the initial hypertensive re- 
sponse, mean blood pressure drops below 
baseline because a,ARs in the ventrolateral 
medulla oblongata attenuate sympathetic 
and accentuate parasympathetic outflow 
(12). 

T o  explore the role of specific a2AR 
subtypes in regulating these hemodynamic 
~ r o ~ e r t i e s .  we measured real-time mean . . 
blood pessure and heart rate in unre- 
strained, conscious animals by using an 
intra-aortic catheter connected to a pres- 
sure transducer (13). Disruptions of the 
AdraZc or Adra2b gene did not result in a 
significant change in mean arterial pres- 
sure or heart rate at baseline. To  examine 
the hemodynamic response to az agonists, 
we administered dexmedetomidine (5 ue 
per kilogram of body weight) through ;he 
catheter as a bolus. Dexmedetomidine is a 
highly selective agonist at the az subtype 
(14, 15). The arterial blood pressure re- 
sponse to dexmedetomidine in wild-type 
mice (16) was biphasic. We observed an 
immediate hypertensive response, fol- 
lowed by a long-lasting (>60 min) drop in 
mean arterial pressure to below its original 
value (Fig. 2, A and B). Dexmedetomidine 
also caused an immediate bradycardia (Fig. 
2, C and D). 

In contrast, no hypertensive response 
to dexmedetomidine was observed in 
Adra2b-IAdraZb- mice. Rather, the hypo- 
tensive response occurred immediately 
and was significantly greater than that 
observed for control animals (Fig. 2, A 
and E). The bradycardic response to 
dexmedetomidine, however, did not differ 
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significantly between Adrn2hp lAdm2hp  
and control mice (Fig. 2C). A d m 2 h p /  
Adrn2hp Illice had a n o r ~ n a l  hypertensi1.e 
response to challenge with a nonselective 
a, agonist (0.1 k g  of p h e ~ ~ y l e p h r i ~ ~ e  
per kilogram of body weight) (17), con- 
firmine tha t  resistance vessels in  Aclra2bpl " 

Aclra2bp mice are capahle of a normal 
vasoconstrictive response to  a , A R  stimu- 
lation. W e  observed n o  significant differ- 
ence hetween Adrn2cp/Adrn2cp and con-  
trol mice in  the  ~naen i tude  of t h e  u 

hypertensive, hypotensive, or bradvcardic 
responses to  agonist (Fig. 2,  B, D, and 
F).  

Our  results show that the  central hypo- 
tensive response to a2 agonists is not medi- 
ated by the  a,, or a,, suhtypes. This re- 
svonse is lost after a subtle mutation of the 
a2 ,  subtype in vivo (3). These observations 
strongly implicate the  aza subtype in  the  
control of central sylnpathetic outflow. T h e  
major component of the  a2-agonist-in- 
duced increase in systemic hlood pressure 
appears to  he mediated by a?,, receptors. 
T h e  magnitude of the  long-last~ng hypoten- 
sive response to an  a, agonist 111 Aclra2bpl 
A&a2hp mice was also significantly greater 
than that in control animals. This finding 
suggests that the  magnitude of hypotension 
seen with circulating "central" a2 agonists 
such as clonidine actuallv revresents the  , L 

su~nmation.oi.central and peripheral effects. 
It may he possible, therefore, to enhance 
the  therapeutic potency of a2 agonists as 
antihypertensive drugs hy develop~ng com- 
pounds with a lower relative aff111ity for the  
a2, subtype. 
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