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Central Hypotensive Effects of the
o, -Adrenergic Receptor Subtype

Leigh B. MacMillan, Lutz Hein, Marta S. Smith,
Michael T. Piascik, Lee E. Limbird*

a,-Adrenergic receptors (a,ARs) present in the brainstem decrease blood pressure and
are targets for clinically effective antihypertensive drugs. The existence of three a,AR
subtypes, the lack of subtype-specific ligands, and the cross-reactivity of a,,AR agonists
with imidazoline receptors has precluded an understanding of the role of individual o, AR
subtypes in the hypotensive response. Gene targeting was used to introduce a point
mutation into the o, AR subtype in the mouse genome. The hypotensive response to
a,AR agonists was lost in the mutant mice, demonstrating that the o, AR subtype plays

a principal role in this response.

OL,ARs located in the rostral ventrolateral
medulla respond to norepinephrine and epi-
nephrine to decrease sympathetic outflow
and reduce arterial blood pressure (1). This
hypotensive effect has been the rationale for
the use of clonidine, an o, AR agonist, in the
treatment of hypertension (1). There is con-
troversy, however, concerning whether
agents such as clonidine, which contain an
imidazole moiety, elicit their hypotensive ef-
fects by interacting with o, ARs or with a
separate so-called imidazoline receptor pop-
ulation (2). Endogenous agonists of the pu-
tative imidazoline receptor population have
been described (3). We explored the role of
a,, AR, one of three a, AR subtypes (4), in
eliciting a hypotensive effect because brain-
stem localization of a,, AR mRNA suggested
that the o, AR subtype might participate in
this response (5).

We used gene targeting to mutate the
a, AR gene to express an Asp”®—>Asn
(D79N) ,,AR in mice. The D79N mutation
substitutes asparagine for the aspartate residue
at position 79, which is predicted to lie within
the second transmembrane span of o, AR
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and is highly conserved among heterotrimeric
GTP-binding protein (G protein)-coupled
receptors (6). In AtT20 anterior pituitary
cells, the D79N «, AR is selectively uncou-
pled from activation of K* currents, but re-
mains coupled to inhibition of voltage-gated
Ca?* channels and of adenosine 3',5'-mono-
phosphate (cAMP) production characteristic
of the wild-type receptor (7). We created a
mouse line with this D79N «, AR to explore
both the role of the a,, AR subtype in cardio-
vascular and other physiological functions and
the role of various signal-transduction path-
ways in o, AR effects. We now report the
cardiovascular functions of this mutant D79N
oy, AR.

The substitution of the mutant for the
wild-type o,, AR gene in the mouse genome
(8) was documented by Southern (DNA)
analysis of diagnostic restriction digests in
offspring of heterozygous intercrosses (Fig.
1A) and by DNA sequencing (Fig. 1B). The
density of a,, AR, assessed through use of the
>H-labeled o,AR antagonist RX 821002,
was significantly reduced (80%) in mice ho-
mozygous for the D79N a,, AR compared
with wild-type mice (Fig. 2A). This reduc-
tion in density was not caused by changes in
the amount of mRNA encoding D79N
a,,AR (Fig. 2B). These findings indicate
that, in vivo, the D79N o, ,AR is improp-
erly processed or stabilized in target cells.
a,,AR binding properties in mutant ani-
mals, however, showed appropriate a,, AR
selectivity and the absence of allosteric
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regulation by Na*, which is characteristic
of the D79N «, AR (9). a,AR agonists
were not less potent at the D79N a, AR
(10); thus, functional losses in the mutant
mice did not result from an inability of the

Fig. 1. Production of D79N
a,, AR mice through use of
gene targeting (78). (A)
a,,AR genomic locus and
representative Southern blot
showing genotyping of off-

*
N N (N)

D79N (D)

spring  from  wild-type
a,,AR/D79N a,, AR hetero-
zygote intercrosses. The

open rectangle represents
DNA included in the target-
ing vector, the black box in-
dicates the «,,AR coding
region, and the asterisk de-
notes the D79N mutation.

a,,AR genomic locus

Wild type (W) ——7.1 kb——
—6.1 kb——

D79N «, AR to bind agonist.

a,AR agonists evoke a centrally mediated
hypotensive response secondary to a transient
hypertensive response mediated by a,AR-
elicited contraction of the peripheral vascula-

D79N

Wild type

Bl N

POPOOOOPO-HOOO0 M

\\

CTAG

G T AG

Genomic DNA was isolated from tail biopsies, digested with Nhe i (N), and hybridized to the external
probe (P). D79N homozygous mutant mice were produced at the expected Mendelian ratio. (B)
Representative sequencing gel confirming D79N mutation of the a,,AR locus (79). Asterisks indicate
bases altered in the original targeting vector and detected in the D79N mouse DNA.

Fig. 2. Characterizaton of A " B

D79N a,,AR binding and ex- o ek bl 1. D E*Pecte? L4
pression. (A) Saturation bind- B _ ® D79N e
ing of [HRX 821002 to 3% 150+ Coan
AR in isolated brain mem- 5 B e
branes from wild-type and § =100+ | < Wild type
D79N mice(13). Assayinclud- & E " 453bp

ed 1 pM prazosin to block EE 504

contributions to the binding F=

duetoay,ARand oy ARSUD- = | | < Cyclophilin
types (20). A nonlinear regres- oI - e A SR

sion fit of the data to a hyber- [PH]RX 821002 (nM)

bola characteristic of binding

toasingle site yielded the following values for 8, . (fmol/mg): wild-type, 208.6 % 24.8; D79N, 39.8 = 2.7; and
for Ky (nM): wild-type, 2.6 + 0.1; D79N, 2.4 = 0.1. Values are averages {(mean * SEM) from three
experiments. The D79N B, was significantly different from wild-type 8,,,,, (P < 0.01, unpaired Student's t
test). Mice heterozygous for the D79N mutation exhibited an o, AR density halfway between those of the
wild-type and homozygous D79N mice (27). (B) Ribonuclease protection analysis representative of three
independent preparations of total brain RNA isolated from wild-type (W/W), heterozygous {W/D), and D79N
mice (D/D) (22). Protection of cyclophilin mRNA was used to normalize RNA loading in each lane, and
quantitation confirmed that amounts of wild-type and D79N RNA were not different in male or female mice.

Fig. 3. Hemodynamic mea-
surements for wild-type and
D79N a, AR mice (23). (A)
Mean blood pressure (upper
panels) and heart rate (lower
panels) for bolus injections of
UK 14,304 (UK, 100 p.g per ki-
logram of body weight) and
dexmedetomidine (Dex, 5 png/

>

Mean arterial pressure
(mm Hg)

A Wild type

ture (1). Infusion of UK 14,304 or dexme-
detomidine into the carotid artery of con-
scious, unrestrained wild-type mice resulted in
a transient pressor response followed by an
extended hypotensive response (Fig. 3A).
The hypotensive response was essentially ab-
lated in the D79N o, AR mice, independent
of the agonist studied or the site of agonist
infusion (carotid or femoral artery) (Fig. 3A,
upper panels, and Fig. 3B). Because these
agonists are imidazoline analogs, the nearly
complete loss of the hypotensive response to
these agents in the D79N mice reveals a
principal role of the a,,AR subtype in regu-
lating blood pressure in response not only to
native catecholamines but also to imidazo-
line-based &, AR agonists. The similar base-
line blood pressure and heart rate of wild-type
and D79N mice (Fig. 3A) suggest that mech-
anisms independent of the a, AR, or com-
pensatory changes in response to the D79N
mutation, establish basal cardiovascular set
points.

The a,, AR subtype appears to have a
dominant role in eliciting the immediate
hypertensive response to o, AR agonists be-
cause targeted deletion of the a,, AR but not
the o, AR subtype eliminates the transient
increase in blood pressure after infusion of
dexmedetomidine into the carotid artery
(11). Our finding that the hypertensive re-
sponse in D79N mice is absent after femoral
administration of UK 14,304 (Fig. 3B) sug-
gests that the contribution of the o, AR
subtype to peripheral vasoconstriction varies
in different vascular compartments.

The o, AR subtype appears to have a
critical role in the hypotensive response to
,AR agonists, despite data implicating a role
for independent imidazoline binding sites in
this response (2). We do not know whether
the loss of function observed in the D79N
mice resulted from selective (7) or generalized
(12) uncoupling of the mutant receptor from
its signal transduction pathways, from the re-

kg) into a carotid arterial cath-
eter at time 0. Baseline blood

pressure and heart rate are @ ‘_:‘600 &
shown as dotted fines. Data  E £ 500
are shown as the mean + SEM § ® 400
(h = 5). (B) Maximal increase T & 50
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in the carotid artery and after injection of UK (218 pg/kg, cumulative dose) into a femoral arterial catheter. D79N values significantly different from those of wild
type (P < 0.01, unpaired Student’s t test) are indicated by an asterisk.
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duction in receptor density (Fig. 2), or from a
combination of these effects. Our results and
those of Link et al. (11) indicate that subtype-
selective ligands might provide a therapeutic
advantage in the treatment of hypertension.
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Cardiovascular Regulation in Mice Lacking
o,-Adrenergic Receptor Subtypes b and c
Richard E. Link, Kavin Desai, Lutz Hein, Mary E. Stevens,

Andrzej Chruscinski, Daniel Bernstein, Gregory S. Barsh,
Brian K. Kobilka*

a,-Adrenergic receptors (a,ARs) are essential components of the neural circuitry reg-
ulating cardiovascular function. The role of specific «,AR subtypes (a,,, oy, and a,)
was characterized with hemodynamic measurements obtained from strains of geneti-
cally engineered mice deficient in either o, or o, receptors. Stimulation of o, receptors
in vascular smooth muscle produced hypertension and counteracted the clinically ben-
eficial hypotensive effect of stimulating o,, receptors in the central nervous system.
There were no hemodynamic effects produced by disruption of the o, subtype. These
results provide evidence for the clinical efficacy of more subtype-selective o,AR drugs.

0L, ARs have a prominent role in the car-
diovascular system and influence vascular
tone at multiple points in a complex reflex
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arc. a,ARs located in the brain stem are
targets for antihypertensive therapy because
stimulation of these receptors produces a
long-lasting drop in systemic blood pressure.
Paradoxically, stimulation of o, ARs on ar-
terial smooth muscle cells increases blood
pressure by increasing vascular resistance.
Three subtypes of a,AR (a,,, oy, and o, )
have been isolated and share a high degree
of structural similarity (50 to 60% identity).
All these receptors couple to the inhibitory
heterotrimeric GTP-binding protein (G,)
and inhibit adenyl cyclase. The three
a,ARs differ, however, in their patterns of
tissue expression (1). Little is known about
the role of the three a,AR subtypes in
cardiovascular physiology. Studies have
been hampered both by the lack of subtype-
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