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Central Hypotensive Effects of the 
a,,-Adrenergic Receptor Subtype 

Leigh B. MacMillan, Lutz Hein, Marta S. Smith, 
Michael T. Piascik, Lee E. Limbird* 

a,-Adrenergic receptors (a2ARs) present in the brainstem decrease blood pressure and 
are targets for clinically effective antihypertensive drugs. The existence of three a2AR 
subtypes, the lack of subtype-specific ligands, and the cross-reactivity of a2AR agonists 
with imidazoline receptors has precluded an understanding of the role of individual a2AR 
subtypes in the hypotensive response. Gene targeting was used to introduce a point 
mutation into the a2,AR subtype in the mouse genome. The hypotensive response to 
a2AR agonists was lost in the mutant mice, demonstrating that the a,,AR subtype plays 
a principal role in this response. 

&ARs located in the rostra1 ventrolateral 
medulla respond to norepinephrine and epi- 
nephrine to decrease sympathetic outflow 
and reduce arterial blood Dressure (1).  This , , 

hypotensive effect has been the rationale for 
the use of clonidine, an a2AR agonist, in the 
treatment of hypertension (1 ). There is con- 
troversy, however, concerning whether 
agents such as clonidine, which contain an 
imidazole moiety, elicit their hypotensive ef- 
fects bv interacting with WARS or with a 
separatk so-called Lidazol iL receptor pop- 
ulation (2) .  Endogenous agonists of the pu- 
tative imidazoline receptor population have 
been described (3). W e  explored the role of 
a,,AR, one of three a 2 A R  subtypes (4), in 
eliciting a hypotensive effect because brain- 
stem localization of aZaAR mRNA suggested 
that the aZaAR subtype might participate in 
this response (5). 

We used gene targeting to mutate the 
a2,AR gene to express an Asp7'+Asn 
(D79N) Q,~,AR in mice. The D79N mutation 
substitutes asparagine for the aspartate residue 
at position 79, which is predicted to lie within 
the second transmembrane span of aZaAR 
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and is highly conserved among heterotrimeric 
GTP-binding protein (G protein)-coupled 
receptors (6). In At720 anterior pituitary 
cells, the D79N a,.AR is selectivelv uncou- 

Ld 

pled'from activation of Kt  currents, but re- 
mains coupled to inhibition of voltage-gated 
Ca2+ channels and of adenosine 3',5'-mono- 
phosphate (CAMP) production characterlstic 
of the wild-type receptor (7). We created a 
mouse line with this D79N a,,AR to explore 
both the role of the a,,AR subtype In cardio- 
vascular and other physiological functions and 
the role of various signal-transduction path- 
wavs in a,.AR effects. We now renort the 

L d 

carhiovascular functions of this mutaAt D79N 

a2aAR. 
The substitution of the mutant for the 

wild-type a2,AR gene in the mouse genome 
(8) was documented by Southern (DNA) 
analysis of diagnostic restriction digests in 
offspring of heterozygous intercrosses (Fig. 
1A) and by DNA sequencing (Fig. 1B). The 
density of a2,AR, assessed through use of the 
'H-labeled a 2 A R  antagonist RX 821002, 
was significantly reduced (80%) in mice ho- 
mozygous for the D79N azaAR compared 
with wild-type mice (Fig. 2A). This reduc- 
tion in density was not caused by changes in 
the amount of mRNA encoding D79N 
a2,AR (Fig. 2B). These findings indicate 
that,  in vivo, the D79N a 2 a A R  is improp- 
erly processed or stabilized in target cells. 
a2,AR binding properties in mutant ani- 
mals, however, showed appropriate a2,AR 
selectivity and the absence of allosteric 
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regulation by Na+, which i s  characteristic D79N a,,AR to  bind agonist. 
of the D79N a2,AR (9). a,AR agonists a2AR agonists evoke a centrally mediated 
were not  less potent at the D79N a2,AR hypotensive response secondary to a transient 
(1 0); thus, functional losses in the mutant hypertensive response mediated by a2AR- 
mice did not  result from an inability of the elicited contraction of the peripheral vascula- 

Fig. 1. Production of D79N A AR genOmlc locus 
aZaAR mice through use of Wild type D79N 

gene targeting (18). (A) 
azaAR genomic locus and + 
representativesouthern blot W''d (W) -7.1 kb- 
showing genotyping of off- 
spring from wild-type 
azaAWD79N aZaAR hetero- 
zygote intercrosses. The 
open rectangle represents 
DNA included in the target- 
ing vector, the black box in- 
dicates the aZaAR coding 

D79N (0 )  -6.1 kb- 

region, and the asterisk de- C T A G  C T A G  

notes the D79N mutation. 
Genomic DNA was isolated from tail biopsies, digested with Nhe i (N), and hybridized to the external 
probe (P). D79N homozygous mutant mice were produced at the expected Mendelian ratio. (B) 
Representative sequencing gel confirming D79N mutation of the azaAR locus (19). Asterisks indicate 
bases altered in the original targeting vector and detected in the D79N mouse DNA. 

Fig. 2. Characterization of 
D79N a2,AR binding and ex- 
pression. (A) Saturation bind- 
ing of PH]RX 821002 to 
azaAR in isolated brain mem- 
branes from wild-type and 
D79N mice (13). Assay includ- 

A Wild type 

D79N 

ed 1 pM p r m i n  to block ~2 contributions to the binding , , 
due to a,,AR and a,@ sub- "- 

types (20). A nonlinear regres- 0 
0 1 2 3 4 5 6  

wrw WID DID - 
-I, 

Expected 
fragment size: 

+ Wild type 
453 bp 

sion fit of the data to a hyber- PWRX 821002 (nM) 
bola characteristic of binding 
to a single site yielded the following values for B, (fmoVmg): wild-type, 208.6 f 24.8; D79N, 39.8 + 2.7; and 
for K, (nM): wild-type, 2.5 2 0.1; D79N, 2.4 f 0.1. Values are averages (mean + SEM) from three 
experiments. The D79N B, was significantly different from wild-type B,, (P < 0.01, unpaired Student's t 
test). Mice heterozygous for the D79N mutation exhibited an a,,AR density halfway between those of the 
wild-type and homozygous D79N mice (21). (8) Ribonuclease protection analysis representative of three 
independent preparations of total brain RNA isolated from wild-type ( WN) ,  heterozygous ( W/D), and D79N 
mice (D/D) (22). Protection of cyclophilin mRNA was used to normalize RNA loading in each lane, and 
quant'iation confirmed that amounts of wild-type and D79N RNA were not different in male or female mice. 

ture (1). Infusion of UK 14,304 or dexme- 
detomidine into the carotid arterv of con- 
scious, unrestrained wild-type mice resulted in 
a transient pressor response followed by an 
extended hypotensive response (Fig. 3A). 
The hypotensive response was essentially ab- 
lated in the D79N a2,AR mice, independent 
of the agonist studied or the site of agonist 
infusion (carotid or femoral artery) (Fig. 3A, 
upper panels, and Fig. 3B). Because these 
agonists are imidazoline analogs, the nearly 
complete loss of the hypotensive response to 
these agents in the D79N mice reveals a - 
principal role of the a2,AR subtype in regu- 
lating blood pressure in response not only to 
native catecholamines but also to imidazo- 
line-based a,AR agonists. The similar base- 
line blood pressure and heart rate of wild-type 
and D79N mice (Fig. 3A) suggest that mech- 
anisms independent of the a,,AR, or com- 
pensatory changes in response-to the D79N 
mutation, establish basal cardiovascular set 
points. 

The azbAR subtype appears to have a 
dominant role in eliciting the immediate 
hypertensive response to a2AR agonists be- 
cause targeted deletion of the a,,AR but not  
the a,,AR subtype eliminates the transient 
increase in blood pressure after infusion of 
dexmedetomidine into the carotid artery 
(1 1 ). Our finding that the hypertensive re- 
sponse in D79N mice is absent after femoral 
administration of UK 14,304 (Fig. 3B) sug- 
gests that the contribution of the a2,AR 
subtype to peripheral vasoconstriction varies 
in different vascular compartments. 

The a,,AR subtype appears to have a 
critical role in the hypotensive respom to 
a,AR agonists, despite data implicating a role 
for independent imidazoline binding sites in 
this response (2). We do not know whether 
the loss of function observed in the D79N 
mice resulted from selective (7) or generalized 
(1 2) uncoupling of the mutant receptor from 
its signal transduction pathways, from the re- 

Fig. 3. Hemodynamic rnea- A 
Dex 

6 
surements for wild-type and c ,  Dex UK + Agonist 
D79N a,PR mice (23). (A) 

]a ci of 
Mean blood pressure (upper infusion 
panels) and heart rate (lower Wild type 

c 'a 
panels) for bolus injections of = 6 ?! D79N 
UK 14,304 (UK, 100 kg  per ki- . E Z  10 

logram of body weight) and 5 ?! 
dexmedetomidine (Dex, 5 pS/ 

= a  
n=10 13 7 7 5  7 

kg) into a carotid arterial cath- 
eter at time 0. Baseline blood 
pressure and heart rate are 
shown as dotted lines. Data 8 - ,  
are shown as the mean 2 SEM 
(n = 5). (8) Maximal increase 
and decrease in mean blood 

-5 0 5 10 15 20 25 30 35 40 -5 0 5 10 15 20 25 30 pressure (2SEM) after admin- 1 7 1 5 5  7 7  4 7  Time (mln) Tlme (min) 
istration of Dex and UK 
in the carotid artery and after injection of UK (21 8 pg/kg, cumulative dose) into a femoral arterial catheter. D79N values significantly different from those of wild 
type (P < 0.01, unpaired Student's t test) are indicated by an asterisk. 
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duct~on in receptor density (Fig. 2) ,  or from a 
co~nb ina t~on  of these effects. Our results and 
those of L ~ n k  et al. (1 1)  indicate that suhtype- 
selective ligands might prov~de a therapeutic 
advantage In the treatment of hypertension. 
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Cardiovascular Regulation in Mice Lacking 
a,-Adrenergic Receptor Subtypes b and c 

Richard E. Link, Kavin Desai, Lutz Hein, Mary E. Stevens, 
Andrzej Chruscinski, Daniel Bernstein, Gregory S. Barsh, 

Brian K. Kobilka* 

a,-Adrenergic receptors (a,ARs) are essential components of the neural circuitry reg- 
ulating cardiovascular function. The role of specific a,AR subtypes (a,,, a,,, and a,,) 
was characterized with hemodynamic measurements obtained from strains of geneti- 
cally engineered mice deficient in either a,, or a,, receptors. Stimulation of a,, receptors 
in vascular smooth muscle produced hypertension and counteracted the clinically ben- 
eficial hypotensive effect of stimulating a,, receptors in the central nervous system. 
There were no hemodynamic effects produced by disruption of the a,, subtype. These 
results provide evidence for the clinical efficacy of more subtype-selective a,AR drugs. 

a , A R s  have a prominent role in the  car- arc. a 2 A R s  located in the  brain stem are 
diovascular system and influence vascular targets for a ~ ~ t i h ~ p e r t e ~ ~ s i v e  therapy because 
tone a t  multiple points in  a complex reflex stimulation of these receptors produces a 

long-lasting drop in systemic blood pressure. 
Paradoxically, stimulation of oc2ARs o n  ar- 
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All these receptors couple to  the  inhibitdry 
heterotri~neric GTP-binding protein (G,) 
and inhibit adenyl cyclase. T h e  three 
a 2 A R s  differ, however, in  their patterns of 
tissue expression ( I ) .  Little is known about 
the  role of the  three a , A R  subtypes in 

Stanford, CA 94305, USA, cardiovascular physiology. Studies have 
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