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film in Fig. 7, to grow it thicker and make
it easier to handle.

These materials may have technological
as well as fundamental implications. The
hollow spheres, for instance, could be used
as controlled drug-delivery systems. The
membranes might be developed further for
separation processes, where nanometer-
scale pores are needed. From a more funda-
mental point of view, the process described
here for structuring inorganic material
might in a modified form be applicable to
the formation of structured inorganic seg-
ments in living organisms. It is by now
almost certain that interfaces play a crucial
role in biomineralization (18), and the in-
terplay of control on different length scales
is certainly necessary to develop intricate
structures such as diatoms.
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Mongolian Tree Rings and 20th-Century
Warming

Gordon C. Jacoby,* Rosanne D. D’Arrigo, Tsevegyn Davaajamts

A 450-year tree-ring width chronology of Siberian pine (Pinus sibirica Du Tour) growing
at timberline (2450 meters) in the Tarvagatay Mountains in west central Mongolia shows
wide annual growth rings for the recent century. Ecological site observations and com-
parisons with instrumental temperature records indicate that the ring widths of these
trees are sensitive to annual temperature variations. Low-frequency variations in the
Tarvagatay tree-ring record are similar to those in a reconstruction of Arctic annual
temperatures, which is based on 20 tree-ring width series from northern North America,
Scandinavia, and western Russia. The results indicate that recent warming is unusual
relative to temperatures of the past 450 years.

Records covering a longer period of time
than those that are available from instru-
mental measurements are essential to eval-
uation of the causes of climatic change,
including possible anthropogenic influences
on climate. Three-hundred-year annual
temperature reconstructions for the Arctic
(1) and Northern Hemisphere (2) based on
high-latitude tree-ring data indicate that
the warming during the past century seen in
instrumental data (3) is unprecedented.
However, tree rings usually reflect temper-
atures during the warm season, and recon-
struction of annual temperatures is contro-
versial (4). Records from other areas can
complement the high-latitude data. The
most appropriate locations are high-eleva-
tion tree-line sites where growth is also
limited by temperature. During a field in-
vestigation in the summer of 1995, we sam-
pled trees growing at timberline in the Tar-
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vagatay Mountains of western central Mon-
golia (Fig. 1). Many trees in Mongolia’s
forests are old (300 to 500 years) and are
undisturbed by human activity.

Mongolia’s climate is characterized by
extreme continentality (5). It is dominated
by the influence of the Siberian (Mongo-
lian) high-pressure cell during the winter
(Fig. 1). Rainfall occurs mainly in summer.
Mean monthly temperatures in northern
Mongolia are —=30°C in January to 20°C in
July. Daily temperatures range from —-50°C
to 40°C and can vary by as much as 30°C in
1 day (6).

The northern third of Mongolia is a mon-
tane forest-steppe zone (7). At lower eleva-
tions, the forests give way to grasslands or to
the margins of the Gobi Desert in the south.
Forests are most dense on northern shady
slopes. In the high western Altai Mountains
(Fig. 1), there are permanent snowfields
and ice. The tree line is variously formed
by Siberian pine (Pinus sibirica Du Tour),
Siberian larch (Larix sibirica Ledebour), or
mixed stands of these species. The most
prevalent tree species is Siberian larch,
with lesser amounts of spruce (Picea), pine
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(Pinus), and fir (Abies) (8). Hardwoods
include birch (Betula), willow (Salix), elm
(Ulmus), poplar (Populus), and a halo-
phyte, Haloxylon ammodendron (8). Sever-
al studies have shown that precipitation
affects annual ring widths of Siberian
larch in certain areas (9), and there are
tree-ring data from near the northwestern
border with Kazakhstan (10).

We sampled Siberian pine at a timber-
line site near a pass through the Tarvagatay
Mountains (2400 to 2500 m elevation at

Fig. 1. Map of Mongo-
lia, showing locations of
the Tarvagatay Moun-
tain tree-ring sampling
site (triangle) and the
Irkutsk meteorological
station (circle).The Tar-
vagatay Mountains are
a smaller range extend-
ing in an easterly direc-
tion from the north side
of the Hungai Moun-
tains. The typical winter
location of the Siberian-
Mongolian High (H) is in-
dicated by the stippled
area.

48°17.51'N and 98°55.87’E). Some Siberi-
an larch is also present at this site. Siberian
pine is widely distributed in central Siberia
and extends southeastward into northern
Mongolia along a narrow corridor (11). The
Tarvagatay Mountains are the southern-
most limit of this species. The trees were on
a northerly slope. The oldest cores (12)
sampled for both Siberian pine and larch
were over 500 years old (Fig. 2A). In the
field, the low-frequency ring-width patterns
in these and other cores were readily recog-
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tree sampled at the Tar-
vagatay site. Individual
cores and trees have in-
dividual variations; there-
fore. many cores and
trees are used to obtain
the communal variation
which, with proper site
selection and sampling,
is responsive to climate
variations that pervade
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Fig. 3 (bottom). Comparison of Tarvagatay Pass ring-width chronol-

ogy (solid line) and reconstruction of Arctic annual temperature departures (7) (dashed line).
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nizable as being similar to those of temper-
ature-sensitive white spruce trees we have
sampled at the latitudinal tree line in North
America (I, 2).

The sampling location is that of a typical
tree-line site where temperature should be
the factor that limits tree growth (13). The
vegetation is more lush here than at some
(drier) high-elevation sites in the United
States. This difference indicates that pre-
cipitation should not be a growth-limiting
factor. Many of the pines exhibit a strip-
bark morphology and partial dieback of
some upper limbs (both are features indicat-
ing stress). Some trees have more live
branches on their south sides, indicating
stress from northerly winds. We sampled
living trees at timberline. Most of the trees
are separated by 10 m or more. There was
no evidence of fire or other disturbance,
and there was abundant subfossil wood on
the surface at the site.

We processed the samples into a chro-
nology of ring-width indices (Fig. 2B).
Cores were dated by means of basic dendro-
chronological techniques (14) and were
standardized with only conservative nega-
tive-exponential or straight-line fits (I, 2,
14). The resulting tree-ring series extends
from 1465 to 1994, but we truncated it at
1550 because there are few samples before
that year. For recent centuries, the chronol-
ogy includes about 35 cores from 25 trees
(Fig. 2B).

We compared the Tarvagatay Pass chro-
nology to instrumental temperature records.
The nearest long-term individual station
record is at Irkutsk, in Russia just to the
north of the border with Mongolia (Fig. 1).
This station is about 600 km from the site
and at a much lower elevation (470 m). The
record begins in 1820, although there are
many missing values, and the more complete
record starts in 1882 and is the primary basis
for gridded temperature data for the region
(15). Although we focus on the gridded data,
which encompass the sampling site (45° to
50°N, 95° to 100°E)(15), almost identical
results were found when the individual
Irkutsk record (from 1882 to 1993) was used.

Previous research has shown that ring-
width indices (16) from the northern and
elevational treeline correlate with temper-
atures over an extended period, including
the previous fall and current growth year
(17). In our study, the chronology and
mean monthly temperatures were best cor-
related over the dendroclimatic year (13,
14) from the prior August through the cur-
rent July. Seasonally averaged temperatures
for the prior fall and current spring were
better correlated with the ring-width indi-
ces than were those for either winter or
summer. Significantly improved results (but
for lower degrees of freedom) were found by




averaging temperatures for the growth year
and 1 or 2 prior years (the correlations for
1-, 2-, and 3-year averages are 0.45, 0.57,
and 0.60, respectively).

Persistence or carryover effects from the
growing conditions of previous years are
well documented (14, 18). This is especially
true for evergreen conifers with long needle
retention. Their photosynthetic surfaces
and root systems are products of environ-
mental conditions integrated over a longer
time period than the actual season of cam-
bial cell division (1, 2, 14, 18). Additional
evidence of the carryover effects of temper-
ature at this site is that the correlation
between the indices and averaged tempera-
ture improves from 0.45 (from the prior
August through the current July) to 0.53
when averaged from the prior April through
the current July.

Annual temperature records have been
reconstructed for the Arctic (1) and North-
ern Hemisphere (2) on the basis of data
from high-latitude tree-ring sites over a
wide region, including North America,
Scandinavia, and Russia. Many of these
sites are in regions of continuous and dis-
continuous permafrost. The higher eleva-
tions of the Tarvagatay Mountains are also
permafrost areas. The Arctic reconstruction
is similar to the Tarvagatay chronology,
primarily at low frequencies (Fig. 3). The
correlation_is 0.71 from 1682 to 1968. A
principal-components analysis of the 20
original ring-width series used to recon-
struct Arctic temperatures (1) and the Tar-
vagatay chronology showed strong common
loading in the first eigenvector. This result
implies that there is a common, coherent
climatic signal among the trees from these
widely separated sites.

Other proxy series from northern latitudes
show trends similar to those of the Mongolian
chronology and Arctic reconstruction. Specif-
ically, these general trends are (i) cooler con-
ditions (more narrow rings) in the early
1700s, followed by warming (wider rings) for
the mid- to late 1700s; (ii) abrupt cooling and
continued cool conditions for much of the
1800s; and (iii) a warming trend for the late
1800s and much of the 1900s (Fig. 2B and Fig.
3). Of the larch series from northwestern
Mongolia developed by Chistyakov, the chro-
nology from the highest elevation site shows
similar growth variations (10). A chronology
developed from Hinoki cypress growing on a
montane site (1550 m) in central Japan evi-
dently reflects winter temperatures (19). It
also shows low-frequency trends that are sim-
ilar to those of the Mongolian chronology and
Arctic reconstruction. Some high-elevation
chronologies from timberline sites in the Ca-
nadian Rockies (20) and southwestern United
States (21) also show similar trends. Tree-ring
density records for eastern Siberia correlate

primarily with summer temperatures and thus
are not directly comparable to the Arctic or
Tarvagatay series (22). Winter temperature
curves for China based on historical data (23)
and an oxygen isotope ratio (3'80) curve
from the Dunde Ice Cap (24) also show these
common trends since 1700 but differ before
1700.

Both the Arctic reconstruction and the
Mongolian data indicate that the 20th cen-
tury has been a time of unusual warmth
relative to the past several centuries. After
regression with temperatures, there is no
trend in the residuals in this or the Arctic
study (1) that would indicate possible CO,
or N fertilization. Growth for the period
from 1944 to 1968 was the highest of any
25-year growth interval over the entire
length of the chronology. The 10 highest
(overlapping) growth intervals are all after
1920. The interval from 1852 through 1876
was the coldest, corresponding to the Neo-
glacial maximum of the Little Ice Age in
some areas (25).

Many efforts are under way to define
the influence of forcing factors (such as
solar effects, volcanism, and greenhouse
gases) for climatic variations in the Holo-
cene (26). Of these, a reconstruction of
solar irradiance (27) shows a strong simi-
larity to the tree-ring curves. The warming
trend starts in the late 1800s, which is in
agreement with the solar curve and before
significant increases in trace gases. The
greatest departures from the solar curve
are in the middle 1800s, a time of several
major volcanic events (28); and in recent
decades, when the solar irradiance does
not fully account for the warming (27).
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