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Impairment of Hippocampal Mossy Fiber
LTD in Mice Lacking mGluR2

Mineto Yokoi, Katsunori Kobayashi, Toshiya Manabe,
Tomoyuki Takahashi, Isako Sakaguchi, Goro Katsuura,
Ryuichi Shigemoto, Hitoshi Ohishi, Sakashi Nomura,
Kenji Nakamura, Kazuki Nakao, Motoya Katsuki,
Shigetada Nakanishi*

Subtype 2 of the metabotropic glutamate receptor (mGIuR2) is expressed in the pre-
synaptic elements of hippocampal mossy fiber-CA3 synapses. Knockout mice deficient
in mGIuR2 showed no histological changes and no alterations in basal synaptic trans-
mission, paired-pulse facilitation, or tetanus-induced long-term potentiation (LTP) at the
mossy fiber-CA3 synapses. Long-term depression (LTD) induced by low-frequency
stimulation, however, was almost fully abolished. The mutant mice performed normally
in water maze learning tasks. Thus, the presynaptic mGIuR2 is essential for inducing LTD
at the mossy fiber-CA3 synapses, but this hippocampal LTD does not seem to be
required for spatial learning.

Long—lasting modifications in synaptic ef-
ficacy at the mossy fiber-CA3 synapses in
the hippocampus result from changes in
presynaptic cells (1-4). In situ hybridiza-
tion analysis and mGluR2 immunostaining
after dentate gyrus lesion indicated that
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mGIluR?2 is predominantly expressed in den-
tate gyrus granule cells (5) and selectively
distributed to mossy fibers (6). By contrast,
mGIuR2 is absent from the Schaffer collat-
eral-commissural fiber-CA1 synapses (5,
6). Furthermore, immunoelectron micros-
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copy indicated a unique localization of
mGluR2 at the preterminal zone of mossy
fibers (Fig. 1).

We investigated the role of the presynaptic
mGluR2 in synaptic plasticity in the mossy
fiber-CA3 synapses by targeted disruption of
the gene encoding mGIluR2 (7). Southemn
(DNA), Northern (RNA), and protein im-
munoblot analyses confirmed the lack of
mGluR2 expression. The mGluR2-deficient
mice showed no behavioral abnormalities nor
any gross anatomical changes in the brain.
Synaptic contacts between mossy fiber termi-
nals and spines of the pyramidal neurons of
CA3 were no different in wild-type and mu-
tant mice. Intense immunoreactivity for
mGluR2 was observed within the stratum lu-
cidum of CA3 and the stratum lacunosum-
moleculare of CAl in the wild-type hip-
pocampus. This immunostaining was not seen
in mutant mice, and only weak immunoreac-
tivity, due to cross-reactivity with mGIluR3
(8), was detected at the molecular layer of the
dentate gyrus (Fig. 2, A and B).

We investigated electrophysiological re-
sponses at the mossy fiber—CA3 synapses in
slice preparations with standard extracellular
recording techniques (3, 4). Although there
was some slight variation in the time course of
the field excitatory postsynaptic potential
(EPSP) evoked by stimulation of mossy fibers,
no consistent difference in the amplitude of
EPSPs relative to that of the fiber volley was
detected between wild-type (213 * 24%) and
mutant mice (229 = 27%) (mean *+ SEM; n
= 25 each; P > 0.6) (9). Paired-pulse facili-
tation (50-ms interpulse interval) (2, 10) was
no different in wild-type (n = 7, 214 = 10%)
and mutant mice (n = 8, 229 * 15%)
(mean * SEM, P > 0.4).

Exogenous activation of presynaptic
mGluRs inhibits synaptic responses at the
mossy fiber-CA3 synapses (11). Because
(2§,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopro-
pyl)glycine (DCG-IV) acts as a potent and
selective agonist for mGIluR2 or mGluR3
(12), we tested the effect of DCG-IV on
synaptic responses at the mossy fiber syn-
apses. Bath application of DCG-IV markedly
and reversibly depressed EPSPs in wild-type
mice, but this depression was greatly reduced
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in mutant mice (Fig. 3A). Although the
observed reduction was partial, probably due
to the presence of another DCG-IV-
sensitive mGluR3 (6), these results indicate
that presynaptic mGIluR2 contributes a large
fraction of the presynaptic inhibition at the
mossy fiber-CA3 synapse.

Mossy fiber-CA3 synapses exhibit N-
methyl-D-aspartate (NMDA) receptor—in-
dependent LTP after tetanic stimulation
(13), and this LTP is presynaptic (2, 3).
Prolonged low-frequency stimulation (LFS)
induces homosynaptic LTD at these syn-
apses in hippocampal slices (4). This LTD
also occurs by a presynaptic mechanism
that is independent of postsynaptic cell de-
polarization and NMDA receptors (4). LTP
at the mossy fiber-CA3 synapses was in-
duced normally in mGluR2-deficient mice
after tetanic stimulation (100 Hz, 1 s) (Fig.
3B); the amplitudes of EPSPs 60 min after
tetanus were 152.5 *= 7.1% for wild-type
mice (n = 6) and 161.7 = 10.6% for mu-
tant mice (n = 6) (mean = SEM, P > 0.4).
Furthermore, slightly suprathreshold tetanic
stimulation (100 Hz, 200 ms) induced sim-
ilar extents of LTP between wild-type
(126.8 *+ 4.5%) and mutant mice (117.9 *
7.3%) (n = 5 each, P > 0.3). In contrast,
LTD at the mossy fiber-CA3 synapses was
significantly impaired in mutant mice (Fig.
3, C and D). In wild-type mice, EPSPs were
facilitated during LFS and then decreased
below control levels after LFS. This depres-
sion lasted for at least 45 min. In mutant
mice, the facilitation of EPSPs and the sub-
sequent short-term depression (STD) were
unchanged. However, this depression was
transient and EPSPs returned gradually to
control levels; the amplitudes of EPSPs 45
min after LFS were 78.8 = 3.9% for wild-
type mice (n = 10) and 95.0 = 2.7% for
mutant mice (n = 11) (P < 0.002).

LTD in the CAl region of the hip-
pocampus has been implicated in the un-
derlying mechanism of spatial learning
(14). To test for the involvement of mossy
fiber LTD in spatial learning, we performed

Fig. 1. immunoelectron microscopy of mouse
mossy fiber-CA3 synapses. mGIuR2 immunore-
activity (arrows) is seen at the preterminal zone
rather than at the synaptic junction {(arrowhead) of
mossy fibers; MT, a mossy fiber terminal. Immu-
noelectron microscopy was carried out as de-
scribed (8). Scale bar, 0.5 pm.
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the Morris water maze tasks (15, 16). The
wild-type and mutant mice showed no dif-
ferences in their ability to perform either
the visible- or hidden-platform tasks (Fig. 4,
A and B). In a transfer test, the wild-type
and mutant mice exhibited no differences
in either the time spent or the number of
crossings in the trained quadrant (Fig. 4, C
and D).

We also examined the ability of trained
mice to adapt to a new platform with a
4-day retraining regimen (16). Although
spatial response reversal is thought to cor-
relate with the function of the basal ganglia
(17), this test also permits the evaluation of
spatial learning flexibility. In the reversal
test, the wild-type and mutant mice (n = 12
each) showed no differences in latencies to
find the new platform location (P > 0.14),
the time spent (P > 0.67), and the number
of crossings (P > 0.82) in the newly trained
quadrant. These observations demonstrate
that impairment of mossy fiber LTD due
to mGluR2 deficiency does not hinder
spatial learning in a water maze.

The extent of inhibition of mossy fiber
LTD by a competitive mGIluR antagonist
(4) was comparable to that observed in
mGluR2-deficient mice, which indicates
that mGluR2 serves as a predominant and
selective receptor for induction of mossy
fiber LTD. Accumulating glutamate during
LFS may thus activate the presynaptic
mGluR2 and induce LTD at the mossy fiber
synapses. Furthermore, mGIluR2, when ex-
pressed in CHO cells, is coupled to inhibi-
tion of the adenosine 3,5'-monophosphate
(cAMP) cascade (18). Stimulation of the
cAMP cascade underlies the induction of
LTP at the mossy fiber-CA3 synapses (1);

Fig. 2. immunocytochemical analyses of the hip-
pocampus. Hippocampal coronal sections of lit-
termates (14 weeks old) of wild-type (A) and mu-
tant (B) mice were subjected to immunostaining
with the mGIuR2 antibody; DG, dentate gyrus.



Ca’* entry into the presynaptic terminal
activates Ca?*-calmodulin—sensitive aden-
ylyl cyclase 1, which would, in turn, produce
LTP through protein kinase A. Bidirectional
modification of synaptic efficacy, such as
LTP and LTD, may thus occur by regulation
of the cAMP cascade at the presynaptic site

of the mossy fiber-CA3 synapses.

In mGluR2-deficient mice, STD nor-
mally occurs at the mossy fiber-CA3 syn-
apses after LFS. Thus, the direct involve-
ment of STD in spatial learning cannot be
excluded. Notably, ablation of protein ki-
nase A by gene targeting produces a selec-
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tive defect in mossy fiber LTP (19), and the
elimination of mossy fiber LTP does not
affect spatial learning (19). Thus, contrary
to current theories about hippocampal
function, neither LTP nor LTD at the
mossy fiber-CA3 synapses appears to be
required for spatial learning, although they
may have a variety of other physiological
roles.
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