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Subtype 2 of the metabotropic glutamate receptor (mGluR2) is expressed in the pre- 
synaptic elements of hippocampal mossy fiber-CA3 synapses. Knockout mice deficient 
in mGluR2 showed no histological changes and no alterat~ons in basal synaptic trans- 
mission, paired-pulse facilitation, or tetanus-induced long-term potentiation (LTP) at the 
mossy fiber-CA3 synapses. Long-term depression (LTD) induced by low-frequency 
stimulation, however, was almost fully abolished. The mutant mice performed normally 
in water maze learning tasks. Thus, the presynaptic mGluR2 is essential for inducing LTD 
at the mossy fiber-CA3 synapses, but this hippocampal LTD does not seem to be 
required for spatial learning. 

Long-lasting lllodificatio~ls in synaptic ef- mCluR2 is preilominantly expressed in den- 
ficacy at the mossy fiber-CA3 synapses in tate gyrus granule cells (5) and selectively 
the hippocampus result from changes in iiistrihuted to mossy fibers (6). By contrast, 
presynaptic cells (1-4). I11 situ hyhridisa- mCluR2 is absent from the Schaffer collat- 
tion analysis and mGluR2 ilnmunostaining eral-commissural fiber-CAl synapses (5, 
after dentate gyrus lesion indicateci that 6). Furthermore, i~nmunoelectroll micros- 
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copy indicated a unique localization of 
mGluR2 at the preterminal zone of mossy 
fibers (Fig. 1). 

We investigated the role of the presynaptic 
mGluR2 in synaptic plasticity in the mossy 
fiberSA3 synapses by targeted disruption of 
the gene encoding mGluR2 (7). Southern 
(DNA), Northern (RNA), and protein im- 
munoblot analyses confirmed the lack of 
mGluR2 expression. The mGluR2-deficient 
mice showed no behavioral abnormalities nor 
any gross anatomical changes in the brain. 
Synaptic contacts between mossy fiber termi- 
nals and spines of the pyramidal neurons of 
CA3 were no different in wild-type and mu- 
tant mice. Intense immunoreactivity for 
mGluR2 was observed within the stratum lu- 
cidum of CA3 and the stratum lacunosum- 
moleculare of CAI in the wild-type hip- 
pocampus. This immunostaining was not seen 
in mutant mice, and only weak immunoreac- 
tivity, due to cross-reactivity with mGluR3 
( B ) ,  was detected at the molecular layer of the 
dentate gyms (Fig. 2, A and B). 

We investigated electrophysiological re- 
sponses at the mossy fiberSA3 synapses in 
slice preparations with standard extracellular 
recording techniques (3, 4). Although there 
was some slight variation in the time course of 
the field excitatory postsynaptic potential 
(EPSP) evoked by stimulation of mossy fibers, 
no consistent difference in the amplitude of 
EPSPs relat~ve to that of the fiber volley was 
detected between wild-type (213 + 24%) and 
mutant mice (229 + 27%) (mean 2 SEM; n 
= 25 each; P > 0.6) (9). Paired-pulse facili- 
tation (50-ms interpulse interval) (2, 10) was 
no different in wild-type (n = 7, 214 -+ 10%) 
and mutant mice (n = 8, 229 t 15%) 
(mean t SEM, P > 0.4). 

Exogenous activation of presynaptic 
mGluRs inhibits synaptic responses at the 
mossy fiberXA3 synapses (11). Because 
(2S, 1 'R,2'R,3'R)-2-(2,3-dicarboxycyclopro- 
py1)glycine (DCG-IV) acts as a potent and 
selective agonist for mGluR2 or mGluR3 
(12), we tested the effect of DCG-IV on 
synaptic responses at the mossy fiber syn- 
apses. Bath application of DCG-IV markedly 
and reversibly depressed EPSPs in wild-type 
mice, but this depression was greatly reduced 
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in mutant mice (Fig. 3A). Although the 
observed reduction was partial, probably due 
to the presence of another DCG-IV- 
sensitive mGluR3 (6), these results indicate 
that presynaptic mGluR2 contributes a large 
fraction of the presynaptic inhibition at the 
mossy fiber-CA3 synapse. 

Mossy fiber-CA3 synapses exhibit N- 
methyl-D-aspartate (NMDA) receptor-in- 
dependent LTP after tetanic stimulation 
(13), and this LTP is presynaptic (2, 3). 
Prolonged low-frequency stimulation (LFS) 
induces homosynaptic LTD at these syn- 
apses in hippocampal slices (4). This LTD 
also occurs by a presynaptic mechanism 
that is independent of postsynaptic cell de- 
polarization and NMDA receptors (4). LTP 
at the mossy fiber-CA3 synapses was in- 
duced normally in mGluR2-deficient mice 
after tetanic stimulation (100 Hz, 1 s) (Fig. 
3B); the amplitudes of EPSPs 60 min after 
tetanus were 152.5 & 7.1% for wild-type 
mice ( n  = 6) and 161.7 ? 10.6% for mu- 
tant mice (n = 6) (mean -C SEM, P > 0.4). 
Furthermore, slightly suprathreshold tetanic 
stimulation (100 Hz, 200 ms) induced sim- 
ilar extents of LTP between wild-type 
(126.8 2 4.5%) and mutant mice (1 17.9 ? 
7.3%) (n = 5 each, P > 0.3). In contrast, 
LTD at the mossy fiber-CA3 synapses was 
significantly impaired in mutant mice (Fig. 
3, C and D). In wild-type mice, EPSPs were 
facilitated during LFS and then decreased 
below control levels after LFS. This depres- 
sion lasted for at least 45 min. In mutant 
mice, the facilitation of EPSPs and the sub- 
sequent short-term depression (STD) were 
unchanged. However, this depression was 
transient and EPSPs returned gradually to 
control levels; the amplitudes of EPSPs 45 
min after LFS were 78.8 + 3.9% for wild- 
type mice (n = 10) and 95.0 + 2.7% for 
mutant mice (n = 11) (P < 0.002). 

LTD in the CAI region of the hip- 
pocampus has been implicated in the un- 
derlying mechanism of spatial learning 
(14). To test for the involvement of mossy 
fiber LTD in spatial learning, we performed 

Fig. 1. lmmunoelectron microscopy of mouse 
mossy f i b e r 4 3  synapses. mGluR2 immunore- 
activity (arrows) is seen at the preterminal zone 
rather than at the synaptic junction (arrowhead) of 
mossy fibers; MT, a mossy fiber terminal. Immu- 
noelectron microscopy was carried out as de- 
scribed (8). Scale bar, 0.5 km. 

the Morris water maze tasks (15, 16). The 
wild-type and mutant mice showed no dif- 
ferences in their ability to perform either 
the visible- or hidden-platform tasks (Fig. 4, 
A and B). In a transfer test, the wild-type 
and mutant mice exhibited no differences 
in either the time spent or the number of 
crossings in the trained quadrant (Fig. 4, C 
and D). 

We also examined the ability of trained 
mice to adapt to a new platform with a 
4-day retraining regimen (16). Although 
spatial response reversal is thought to cor- 
relate with the function of the basal ganglia 
(1 7), this test also permits the evaluation of 
spatial learning flexibility. In the reversal 
test, the wild-type and mutant mice (n = 12 
each) showed no differences in latencies to 
find the new platform location (P  > 0.14), 
the time spent (P  > 0.67), and the number 
of crossings (P > 0.82) in the newly trained 
quadrant. These observations demonstrate 
that impairment of mossy fiber LTD due 
to mGluR2 deficiency does not hinder 
spatial learning in a water maze. 

The extent of inhibition of mossy fiber 
LTD by a competitive mGluR antagonist 
(4) was comparable to that observed in 
mGluR2deficient mice, which indicates 
that mGluR2 serves as a predominant and 
selective receptor for induction of mossy 
fiber LTD. Accumulating glutamate during 
LFS may thus activate the presynaptic 
mGluR2 and induce LTD at the mossy fiber 
synapses. Furthermore, mGluR2, when ex- 
pressed in CHO cells, is coupled to inhibi- 
tion of the adenosine 3,5'-monophosphate 
(CAMP) cascade (18). Stimulation of the 
CAMP cascade underlies the induction of 
LTP at the mossy fiberXA3 synapses (I); 

Fig. 2. lmmunocytochemical anaiyses of the hip- 
pocampus. Hippocampal coronal sections of lit- 
termates (14 weeks old) of wild-type (A) and mu- 
tant (B) mice were subjected to immunostaining 
with the mGluR2 antibody; DG, dentate gym. 
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Ca2+ entry i n t o  the presynaptic terminal  o f  the  mossy fiber-CA3 synapses. 
activates Ca't-calmodulin-sensitive aden- In mGluR2-def ic ient  mice. S T D  no r -  
y ly l  cyclase 1, w h i c h  would, in turn,  produce mal ly  occurs at the  mossy f iber-CA3 syn- 
L T P  through pro te in  kinase A. Bidirect ional  apses after LFS. Thus, the  direct involve- 
~nod i f i ca t i on  o f  synaptic efficacy, such as m e n t  o f  S T D  in spatial learning cannot be 
L T P  and LTD, may thus occur by regulation excluded. Notab ly ,  ablat ion o f  p ro te in  k i -  
o f  the  C A M P  cascade at the  presynaptic site nase A by gene targeting produces a selec- 

Fig. 3. Inhbition of exci- 
tatory synaptlc transmls- 
sion by DCG-V and LTP 
and LTD at mossy fiber- 
CA3 synapses. Repre- 
sentative data of the 
DCG-IV effect on CA3 
synaptlc responses of 
w~ld-type (+/+) and mu- 
tant (-/-) mice are ind- 
cated (A); the extents of 
the synaptic Inhibition 
with 1.0 p M  DCG-IV 
were 94.1 i 2.1 % for 
w~ld-type mice (n = 4) 
and 44.8 i 9.9% for 
mutant mice (n = 3) 
(mean 5 SD, P < 
0.0002); at 0.1 p M  
DCG-IV (201, nhbitlon 
was 52 7 i 8.4% for 
w~ld-type mice (n = 7) 
and 17.0 i 4.1 %for mu- 
tant mlce (n = 7) 
(mean i SD, P < Time (min) 2 Time (min) 

0.0001). A simlar DCG-lV effect was observed In the presence of 25 p M  D-(-)-2-amlno-5-phospho- 
novalerate (D-AP5), an NMDA receptor antagonst. LTP induced by tetanic stimulaton (100 Hz. 1 s) 
given once (B) and the facilltatlon (C) and the subsequent LTD (D) eliclted by LFS (1 Hz, 15 mn)  were 
recorded In sllces from wild-type and mutant littermates (8 to 15 weeks old). The facitation of EPSPs at 
the begnnng and at the end of LFS was not dfferent between wild-type mice (437 -t 29% and 299 i 
17%. n = 9) and mutant m c e  (428 + 24% and 294 -t 18%, n = 8) (P > 0.8). Traces represent sample 
EPSPs recorded at the tmes indlcated by the numbers on the correspondng graphs; in (D), EPSPs 
returned to control levels 45 m n  after LFS In 8 of 11 slces of mutant mice, as indcated In the sample 
trace. Mossy fber EPSPs were recorded as described (4); mossy flbers were stmuated at 0.1 Hz: 
D-AP5 (25 pM) was apped  before tetanic stmulaton; D-AP5 (25 pM) was confirmed to have no effect 
on LTD (4). All experiments examinng LTP and LTD were performed In a bllnded fashon. 

Fig. 4. Morrls water maze test of w d -  A 
type and mutant mce  In both a vlslble 

B 
Vlslble - H~dden 

platform task (A) and a h~dden platform C - 
task (B), the performances of wild type 50-  =. 50- 

(+/+) and mutant (-/-) mlce (n = 18 5 40- u +I+ g 40. + +I+ 
" 

each) Improved durng tranng [vlsble 5 30. -1- 
F(5,170) = 107 057, P < 0 0001 hld- 
den F ( l l  374) = 21 628 P < 0 00011, 'O- 

and there was no d~fference between the 10-  

two genotypes [vslble, F(1, 34) = 0 008, m o 
P = 0 9297, hidden, F(1, 34) = 0 615, P I  - 5 6 6 - I 9101112 

= 0 43831 In the transfer test no slgnf Blocks of four trials Blocks of four trials 

cant dlfference was noted In the tlme 
srsent iP > 0 781 iC) and the number of 

C D 
, , , ,  , 

crossings (P > 0.1 1) (D) In the trained 
quadrant. The anmas used were 8 to 23 
weeks old. Bars ndlcate the SEM. 

Trained @ Right 

Left Oopposite *l A 

t ive  defect in mossy fiber L T P  ( 1  9), and the 
e l i ln ina t ion  o f  inossv f iber L T P  does n o t  
affect spatial learning ( 1  9). Thus, contrary 
t o  current theories about hippocampal 
funct ion,  nei ther L T P  n o r  LTD at the  
mossy f iber-CA3 synapses appears t o  be 
required for spatial learning, al though they 
may have a variety o f  other physiological 
roles. 
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