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Mechanism of Phreatic Eruptions at Aso 
Volcano inferred from Near-Field Broadband 

Seismic Observations 
Satoshi Maneshima," Hitoshi Kawakatsu,-l 

Hirotoshi Matsubayashi, Yasuaki Sudo, Tomoki Tsutsui, 
Takao Ohminato, Hisao Ito, Koichi Uhira, Hitoshi Yamasato, 

Jun Oikawa, Minsru Takeo, Takashi lidaka 

Broadband seismometers deployed at Aso volcano in Japan have detected a hydro- 
thermal reservoir 1 to 1.5 kilometers beneath the crater that is continually resonating with 
periods as long as 15 seconds. When phreatic eruptions are observed, broadband 
seismograms elucidate a dynamic interplay between the reservoir and discharging flow 
along the conduit: gradual pressurization and long-period (--20 seconds) pulsations of 
the reservoir during the 100 to 200 seconds before the initiation of the discharge, followed 
by gradual deflation of the reservoir concurrent with the discharging flow. The hydro- 
thermal reservoir. where water and heat from the deeper magma chamber probably 
interact, appears to help control the surface activity at Aso volcano. 
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the source racilation is isotropic, the LPTs 
can he located with the use of wave form 
semhlancc analysis (8). T h e  inferreii point 
source of the LPTs, which best explains t h c ~ r  
particle  notions as well as their relati\~e ar- 
rival times, was a few hllncired lncters s o ~ ~ t h -  
west of the crater at depths of 1 to 1.5 lc~n 
(Fig. 4 A ) .  This area can he considered as the 
centroid location of lnolncnt release. T h e  
slze of the source region was nlore difficult t o  
estimate hut annears to he smaller than 1 k ~ n  
in diameter, considering the pattern of the 
ohserved particle  notions anii amplitlliies at 
the stations Inear the crater (9). T h e  first 
motions of LPTs were usually polarized neg- 
at~vely anci were often accompanied hy 
short-period (-0.3 to 0.5 s) signals (10) (Fig. 
2, B anil C ) .  

D~lring our experiment, Aso \~olcano he- 
came intermittently active, anii a nllnlher of 
phreatic eruptions-small eruptions of mud, 
water, and steam-were ohserl~ed (1 1 )  (Fig. 
5 ) .  A good correlation was observed between 
the occurrence of short-per~od (-0.3 to 
0.5 s) trcnlors [SPTs ( 1  2 ) ]  and the discharge 
of gas, water, and fragmenteii rocks (hereaf- 
ter called "fluid-rock mixture" for simpl~clty) 
from the crater lake. W e  assumed that a SPT 
was caused hy a fluid-rock nllxture 111(n71ng 
along a condu~t  connected to the crater (1 3 ) .  
W e  took the duration of the discharge of the 
fluid-rock ln ix t~~re  to he the SPT duration 
and mcasureci the energy of a n  erllption by 
integrating sil~lareci amplitudes of \~elocity 
seisnloera~ns over the iiuration of discharce. 
There is a clear tendency for longer erup- 
tions to have larger SPT amplitudes (14). 
On the basis of their duration, or nearly 
equi\~alently their energy, phreatic er~lptions 
were classified into two groups: one \\71th 
durations less than 50 s (small eru~?t~ons) .  
anci the other with durations exceeiiing 50 s 
(large eruptions). 

Small eruptions had a characterist~c pat- 
tern of excitation of SPTs: a small initial 
trelnor of 15 to 20 s. rat~iil increase i ~ f  , L 

amplitude, roughly steady cont~nuat ion at 
similar amnlitudcs for 20 to 50 s, and a 
rather sudden cease of trelnor (Fig. 5 A ) .  
Long-period (-15 s) signals with ampli- 
tucies that exceeded those of LPT were rare- 
ly ohserveil (Fig. 5A).  

Large erllptions, w h ~ l e  shar~11g S P T  fea- 
tures with the small eruptions, shorn spec- 
tacular broadband features (Fig. 5B). ( i )  A 
very 1i)ng-pcrioci displacement (VLPD), 
corresponiling to slow inflation in the  
source region, precedecl Inass discharge by 
50 to 150 s. (ii) Long-period pulses (LPPs) 
~ v i t h  a d o l n i ~ ~ a ~ l t  period of 15 to 20 s pre- 
dominantly positively po1ari;eil Lvere super- 
inlposed o n  the VLPD durlng the inflation. 
(iii) As the inflation approached its maxi- 

mum, S P T  (dominant period, 0.3 to 0.5 s) 
~ v l t h  snlall ampl i tu~le  ( -  1 p m )  began, ancl 

the  LPP's iiownswing motlon relative to  
ups\ving motion became larger. ( iv)  Ahout  
15 to  20 s after ~ t s  onset,  t he  ampl~t l lde  of 
the  S P T  increased rapicily ( > I 0  p m )  dur- 
ing a dorvnswing of LPP. This increase was 
approximately synchronized with the  air- 
pressure perturhation recorded hy a micro- 
barograph (Fig. 1)  that corresponded to  
the  time of the  onset of Inass discharge 
fro111 the  crater lake. T h e  VLPD turned 
into deflation, and the  excitation i ~ f  LPP 
\vas suppresseii. ( v )  T h e  duration of the  
S P T  alnd that  of the  cicflating VLPD were 
100 to  200 s. T h e  S P T  remained nearly 
stationary durlng the  i l c f l a t io~~  and rather 
abruptly ceascii concurrent with the  enii 
of deflation. 

T h e  oliserved spectra of LPPs showed a 
large peak around 15 to 20 s. In this perlod 
range, LPPs had si~nilar particle lllotions to 
those of LPTs (Fig. 4B). Correspondingly, 
LPPs were locatcii hy the semblance meth- 
od to almi~st the same source region as the 

Fig. 1. Stations around Aso volcano. Aso IS an 
andestic volcano located in the middle of Kyushu, 
Japan. We Installed 10 broadband three-cotnpo- 
nent velocty seismometers w~th a free perod of 
120 s (STS2) or 30 s (CMG3) (filled crces).  In No- 
vember 1994, two other seis~nometers (CMG3, 
w~th a 100-s free perod) were also temporary de- 
ployed near the crater for 8 days to Inprove the 
az~muth and dstance coverage of stations relative 
to the crater (filled squares). Eight of the 12 stat~ons 
are a ro~~nd  the Nakadake f~rst crater (star) on the 
central cone (shaded sqLlare In Inset). The other 
four stat~ons are near the outer rim of the caldera 
( sod  lne In Inset). A north-by-northwest-south-by- 
southeast trendng chain of older craters are lndi- 
cated by small open clrcles. Topography near the 
craters IS shown by contours at an intetval of 
100 In. A microbarograph was installed 300 In 
east of station ALMS (open trangle). 

LPTs (Fig. 4A) .  As for the  VLPD, it may 
result from a tiraciual increase in fluid vrcs- 
sure beneath the  crater; we estinlateci the  
location of the Dressuse source as well as the 
nlagnituiie of the  pressure change using a 
spherical pressure source 111oiiel (15).  T h e  
si)urcc location that fits the  ohserved ciis- 
place~nents hest is 100 m west of and 1 to 
1.5 km helow the  crater (Fig. 4 A ) ,  close to 
the  source of the  LPT ( 1  6). W e  thus infer 
that the  aource regions of LPTs, LPPs, and 
VLPD are the same. T h ~ s  source region 
constantly vibrates, enlitting LPTs even 
when the  volcano is inactive, anii acts as a 
pressure source of LPP and VLPD for large 
phreatlc eruptions. 

There are several pieces of evidence that 
s~~ggcs t  that the source region of the long- 
pcrloil signals-LPT, LPP, and VLPD-is 
not a magma charnher. First, the source re- 
gion is shallo~v ( 1 to 1.5 km helow the 
crater). Seconii. Aso volcano is III a relative- 
ly quiet period ( the  last magmatic eruption 
occ~lrred in 1990). Third, the surface tem- 
perature of the crater lake 1s only 7OCC, and 
the water of the lake has not evanorated. 
T h e  presence of ample water, as well as a 

/ \ I?,, -----4 / i,, " \ I  
1 ,  . \' 

Fig. 2. (A) Vertical-d~splacetnent seismogram of LPT 
for a per~od of 800 s (23 November 1994). (B) Vertlcal 
displacement, (C) velocty, and (D) 10- to 30-s band- 
passed sesmograms of LPT (23 November 1994) 
for a period of 150 s .  

LLU+ --., 4, 
100 

Time (s) 

Fig. 3. Amplitude spectr~~m of LPT for three sta- 
tons obtained by the stacking of 24 h o ~ ~ r s  of data 
from 27 July 1994. 
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system that can quickly circulate the water 
below the crater, was suggested by the quick 
changes in geomagnetic field associated with 
the activity of Aso volcano (17). It seems 
more plausible that the source region is a 
hydrothermal reservoir in an aquifer that 
contains cracks or fractures filled with gas, 
water, and fragmented rocks (Fig. 6). 

We equate the hydrothermal reservoir 
with the source region of LPT, LPP, and 
VLPD and explain the essential features of 
the observed broadband seismograms. Heat is 
gradually transported upward to the surface 
from a deep-seated magma chamber in the 
form of high-temperature liquid or gas even 
during quiet stages of Aso volcano. The hy­
drothermal reservoir buffers such upward heat 
transport. The pressure in the hydrothermal 
reservoir is sustained by the heat flow from 

below and by gradual leakage of the fluid-rock 
mixture upward to the bottom of the crater 
lake. Sporadic and rapid leakage of fluid-rock 
mixture through fractures above the hydro-
thermal reservoir generates SPT and causes 
the aquifer to shrink and resonate, which 
results in LPT (Fig. 2). The seismic source 
region is recharged by the continuous upward 
transport of magmatic heat from depth. 

A phreatic eruption could be triggered by a 
pressure release due to, for instance, fracture 
of impermeable "cap rocks" near the crater 
(18, 19). The durations of small initial SPT of 
phreatic eruptions of Aso volcano were nearly 
constant around 15 to 20 s and rarely exceed­
ed 25 s regardless of the eruption size. Records 
of a microbarograph (Fig. 1) showed that dis­
charge flow from the crater tended to start not 
at the beginning of the small initial SPT but 

when the SPT amplitudes rapidly increased 
(Fig. 5). Once the fluid-rock mixture starts 
ascending, it could be accelerated to near its 
sound velocity. If the sound velocity is 100 
m/s (19, 20), a fluid-rock mixture flow that 
starts ascending from a depth near 1 km will 
reach the bottom of the crater within 10 to 
20 s. This time interval corresponds to the 
duration of the initial small SPT. The con­
stancy of the duration of the initial SPT 
would mean that cap rocks nearly immediate­
ly break when pressure perturbations accom­
panying the conduit fluid reaches this point. 
A simple application of gas dynamics to the 
flow along the vent of the conduit predicts 
that the flow continues for 40 to 50 s (21). 

For small eruptions, there are few LPPs, 
which suggests that the flow does not ascend 
directly from the hydrothermal reservoir. For 
large phreatic eruptions, the observation of 
LPPs and VLPD indicates that the reservoir 
is more dynamically involved in the eruption 
process. A VLPD possibly corresponds to a 
gradual pressurization and inflation of the 
hydrothermal reservoir because of increases 
of the heat injection rate from a magma 
chamber below. Positively polarized LPPs 
may represent more rapid increase of the 
pressure in the reservoir. It is possible that 
LPPs are associated with injection of high-
temperature materials such as magma or vol­
canic gas from below, which will touch and 
explosively vaporize ground water in the res­
ervoir. When the inflation approaches a 
threshold (16), fluid-rock mixture begins a 
permeable flow out of the hydrothermal res­
ervoir and eventually up to the crater; this 
discharge flow causes the initial small SPT, 
deflates the reservoir, and excites a negative­
ly polarized LPP. Once the conduit flow to 
the crater has developed, the discharge flow 
of fluid-rock mixture becomes roughly stable, 
exciting SPT of larger amplitude. During the 
discharge, the reservoir pressure decreases 
and deflating VLPD occurs, but the excita­
tion of LPP is suppressed. The cessation of 
SPT corresponds to the end of the discharge, 
and the source region is deflated back to a 
static level (22). 

Fig. 6. Schematic view of the hydrothermal sys­
tem associated with phreatic eruptions at Aso 
volcano. 
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Fig. 4. (A) Estimated loca­
tions of LPT and LPP from 
a three-dimensional sem­
blance method. Contours 
of semblance value above 
0.8 with an interval of 2% 
are plotted in a map view 
and an east-west cross 
section. Bandpassed (10 
to 30 s) three-component 
seismograms at five 
close-in stations (TAK, 
SUN, AWS, KHE, and 
HKB) were used for the 
analyses. Also plotted 
with error bars is the loca­
tion of a typical VLPD 
source (closed circle) esti­
mated by fitting the ob­
served VLPD amplitudes 
with the Mogi model. A 
star indicates the location of the crater. (B) Particle motions of a typical LPT are projected on the planes of the 
same map view and east-west cross section as above. Wave forms in the frequency corresponding to the 
fundamental mode recorded at AWS and TAK on 7 June 1994 are shown. 
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Fig. 5. (A) Small phreatic 
eruption on 18 September 
1994 (20:25 GMT) ob­
served at SUN. (top, vertical 
displacement; middle, ve­
locity; bottom, bandpass 10 
to 30 s). Arrow indicates the 
onset of the eruption derived 
by the arrival of air shock 
measured by a micro-
barograph (Fig. 1). This ap­
proximately corresponds to 
the rapid increase in the SPT 
amplitude. The initial SPT is 
defined as the tremor be­
tween its beginning and the 
rapid amplitude increase. 
Seismograms for each erup­
tion at different close-in sta­
tions shared the same features but their amplitudes differed. Scale bars for each trace indicates 
amplitudes one order smaller than those of corresponding traces in (B): 5 ^ m , 20 fxm/s, and 1 (xm/s, 
respectively. (B) Large phreatic eruption on 15 September 1994 (10:21 GMT) recorded at TAK. Details 
are the same as (A), except for the size of the scale bars. 
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Impairment of Hippocampal Mossy Fiber 
LTD in Mice Lacking mGluR2 

Mineto Yokoi, Katsunori Kobayashi, Toshiya Manabe, 
Tomoyuki Takahashi, lsako Sakaguchi, Goro Katsuura, 

~yu ich i  Shigemoto, Hitoshi ohishi, Sakashi Nomura, 
Kenji Nakamura, Kazuki Nakao, Motoya Katsuki, 

Shigetada Nakanishi* 

Subtype 2 of the metabotropic glutamate receptor (mGluR2) is expressed in the pre- 
synaptic elements of hippocampal mossy fiber-CA3 synapses. Knockout mice deficient 
in mGluR2 showed no histological changes and no alterat~ons in basal synaptic trans- 
mission, paired-pulse facilitation, or tetanus-induced long-term potentiation (LTP) at the 
mossy fiber-CA3 synapses. Long-term depression (LTD) induced by low-frequency 
stimulation, however, was almost fully abolished. The mutant mice performed normally 
in water maze learning tasks. Thus, the presynaptic mGluR2 is essential for inducing LTD 
at the mossy fiber-CA3 synapses, but this hippocampal LTD does not seem to be 
required for spatial learning. 

Long-lasting lllodificatlo~~s 111 synaptlc ef- mCluR2 1.; preilominantly expressed in den- 
ficacy at the mossy f~ber-CA3 synapses in tate gyrus granule cells (5) and selectively 
the hippocampus result from changes in iiistrihuted to mossy fibers (6). By contrast, 
presynaptic cells (1-4). In  situ hyhridisa- mCluR2 1s absent from the Schaffer collat- 
tion analysis and mGluR2 ilnmunostaining eral-commissural fiber-CAl synapses (5, 
after dentate gyrus lesion indicateci that 6). Furthermore, i~nmunoelectroll micros- 
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