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The comparison of the three-dimensional shapes of protein molecules poses a complex 
algorithmic problem. Its solution provides biologists with computational tools to organize 
the rapidly growing set of thousands of known protein shapes, to identify new types of 
protein architecture, and to discover unexpected evolutionary relations, reaching back 
billions of years, between protein molecules. Protein shape comparison also improves 
tools for identifying gene functions in genome databases by defining the essential 
sequence-structure features of a protein family. Finally, an exhaustive all-on-all shape 
comparison provides a map of physical attractor regions in the abstract shape space of 
proteins, with implications for the processes of protein folding and evolution. 

If a living cell is viewed as a biochemical 
factory, then its main workers are protein 
molecules, acting as catalysts, transporters, 
and messengers, among other roles. A 11~1- 
lnan genolne encodes about 100,000 of 
these bioloeical macro~nolecules. Their 
functional divers~ty IS nlade possible by the  
d~versity of three-dimensional (3D)  protein 
shapes, also called "structures," which are 
capable of lxghly s p e c ~ f ~ c  ~llolecular recog- 
nition. Understand~ng or sinlulat~ng the 
molecular processes in~rolved in the forma- 
tion of nrotein structures and in their hio- 
logical function is a major challenge of 
molecular biology. However, in spite of 
many years of focused research, ive still lack 
a c o m ~ r e l ~ e n s i ~ ~ e  and accurate theorv of 
protein structure based o n  physical and 
chemical principles. Fortunately, and per- 
hops unexpectedly, a practical solution to 
the problem of predicting protein shape and 
f i ~ n c t ~ o n  from amino acid sequence (and 
thus, ultimately, from nucleotide sequence) 
is provided by nature itself. Molecular evo- 
l u t ~ o n  has resulted in a dense network of 
kinship relations betiveen proteins. By in- 
ferring character~stics of one proteln hased 
on the  f~lnct ion or structure of its relatives. 
biologists exploit these evolutionary rela- 
tions to predict protein shape or fi~nctional 
properties. 

This  exploitation of evolutionarv con- 
nectivity h i s  become possible hecause of a 
ivealth of molecular data about proteins 
fro111 lllany different specles. T o  date,  bi- 
ologists have read the  complete nucleotide 
(and thus amino acid) sequences of ivell 
over 100,000 protein genes (1 ), and x-ray 
crystallographers and nuclear lllagnetic 
resonance spectroscoplsts have deter- 
mined the  3D shanes of several thousand 
protein molecules ( 2 ) .  T h e  molecular pa- 
leontology hased o n  these data reveals a 
remarkable continuity of molecular evolu- 
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t ion. T h e  h~ochelnical  function of many 
proteins has persisted over large evolu- 
tionary time scales (even rvhen cellular 
context has changed, such as in the  tran- 
sition from cells without a nucleus to 
those with a nucleus).  As  a protein mole- 
cule ivith an  essential f~lnctional role 
evolves in the context of a living cell, a 
small number of amino a c ~ d  residues crucial 
for its function tend to be strongly con- 
served (for example, residues that form a 
catalytically active site), while the  rest of 
the protein sequence e~rentually ~lndergoes 
considerable changes. T h e  overall 31) struc- 
ture also tends to remain essentially unal- 
tered, even when all sequence lllernory ap- 
pears to have been lost. This evolutionary 
resilience of protein 3 D  structure is the 
f~lndamental reason for the importance of 
protein shape colnparison as a computa- 
t ~ o n a l  method in molecular biology. 

Recent advances in molecular and struc- 
tural biology have led to the  deternlinatlon 
of Inany 3 D  protein structures. This article 
reviews how solving the geonletrical shape 
comparison problelll leads to interesting 
evolutionary observations, to the  prediction 
of function and structure in part~cular cases, 
and, o n  the  basis of an  all-on-all compari- 
son, to a n  understanding of the  distribution 
of knolvn structures in shape space. 

Comparison by Sequence 
or by Shape? 

Exploiting the  observation of evolut~onary 
connections between proteins in  order to 
predict s a n e  aspects of structure or func- 
t ion is sinlple in principle. If a proteln is 
found to be evolutionarily related to  an-  
other,  t hen  information about the  func- 
t ion (or shape or enzymatic mechanism, 
among other  attributes) of the  one  protein 
can he inferred from that  of the  other,  
with \,arying degrees of accuracy, depend- 
ing o n  the  evolutionary distance between 
them. T h e  question then  a r m s  as to hoiv 

evolutionarv connections are best detect- 
ed: by amino acid sequence conlparison in 
I D  or by shape colnparison in  3D? 

T h e  anslver depends o n  the  time inter- 
val that has elapsed slnce the  presence of a 
collllllon ancestor presumed to be similar in 
function and structure to the two extant 
descendants. A t  close e~~olut ionary distanc- 
es, strlng co~nparison between two protein 
sequences often suffices to establish evolu- 
tionary k insh~p .  A t  larger evolutionary dis- 
tances. Inore sonhisticated methods must he 
used to identify subtle similarit~es In se- 
q ~ e n c e  patterns. For example, a nlethod 
that uses sequence prof~les colllpares prob- 
abilitv values for each of 20 amino acids at 
matching positions in the tivo proteins un- 
der com~ar i son .  T h e  most distant relations. 
ho~ve~re r ,  are n o  longer detectable by cur- 
rent sequence analvsis methods, however 
sopll~sticated, and require co~nparison of 
the 3 D  shapes of proteins. 

Technically, protein sequence compari- 
son is sinlpler than shape colllparison and is 
rout~nelv used In studies of nrotein evolu- 
tion. Shape colllparlson can be used only if 
3 D  structures are available (currentlv in a 
few percent of all cases), hut it is Inore 
sophisticated and Inore powerful than se- 
quence comparison, because silllilarity of 
shape remains detectable e ~ ~ e n  though the 
sequence may have changed beyond recog- 
nition in the  course of evolution. Coml-rar- 
ing protein shapes rather than protein se- 
quences is like using a bigger telescope that 
looks farther into the  universe. and thus 
farther back In tlme, opening the door to 
detecting the most remote and most fasci- 
nating evolutionary relations. 

A n  examnle of what can  be done w ~ t h  
protein shape comparison is the  discovery 
of a colllmon structural core ( a  collllnon 
set of structural elelllents similarly ar- 
ranged in space) in two apparently unre- 
lated enzyllles from different species ivith 
apparently different amino acid sequences. 
O n e  is mammalian glycogen phosphoryl- 
ase, a central control point 111 energy me- 
tabolism; the  other  is a D N A  glucosyl- 
transferase that protects the  D K A  of 
phage T 4  against its own nucleases as it 
degrades the  host's genolne (3) .  Their  
shape similarity reflects a colnlllon chem- 
ical mechanism of diphosphate- and sugar- 
based chemistry, but their substrate spec- 
ificities and cellular f ~ ~ n c t i o n s ,  and e\,en 
their sizes, are very different. Methods for 
3D shape comparison were instrumental in 
this discoverv. 
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Matching 3D Shapes 

In geometrical and algorithmic terms, 
what is involved in shape comparison of 
two proteins? First of all, a typical 300- 
residue protein has about 3000 atoms dis- 
tributed in space according to the convo- 
luted ("folded") trajectory of the polymer 
chain. Recognizing common substructures 
between two such structures is in general a 
very complex combinatorial problem 
(which points in A are equivalent to 
which points in B?). The human visual 
system is very good at recognizing shapes; 
indeed, classical abstractions of protein 
architecture (Fig. 1) were established by 
structural biologists using visual inspec- 
tion of structures (4, 5). However, as the 
number of known structures rapidly in- 
creased, visual inspection as a general 
method became inadequate because a hu- 
man brain cannot easily store the shapes 
of thousands of com~licated macromole- 
cules and cannot easily process the large 
set of possible substructures. Computers 
have the advantage of tremendous stor- 
age capacity and processing speed but 
need adequate software. Software devel- 
opment for shape comparison requires (i) 
a suitable representation of the objects 
of study, (ii) an objective function to be 
optimized by (iii) a comparison algorithm, 
and (iv) appropriate decision rules concem- 
ing the significance of the result. Let us look 
at one way of approaching protein shape 
comparison. 

A suitable representation. To make the 
problem computationally tractable, one 
first simplifies the representation of protein 
shapes, keeping essential features. For ex- 
ample, the complicated atomic structure 

can be represented as a chain trace, that is, 
the ordered succession of residue centers 
(Ca  atoms) described by their x, y ,  7 coor- 
dinates (which accounts for about 1 atom 
out of every 10 in the protein). In these 
terms, the objective of a comparison of two 
protein shapes is an assignment of one-to- 
one equivalence between the Ca atoms, 
where nonmatching residue centers can be 
skipped in either chain. In most applica- 
tions, one also requires that the linear order 
of equivalent pairs along the sequence is 
maintained, that is, that the continuity of 
the polymer chain is considered a key as- 
pect of shape. 

An objective function to be optimized. 
Geometrical objective functions can be 
formulated in terms of inter- or intramo- 
lecular distances yielding, respectively, 3D 
and 2D comparison problems (Fig. 2). In 
3D comparison, one explicitly rotates and 
translates one molecule relative to the 
other and measures intermolecular dis- 
tances between equivalent points in the 
two chains (Fig. 2A). The objective is to 
accommodate the largest possible number 
of equivalent points within small devia- 
tions in position, typically less than 2 to 3 
A. In 2D comparison, 3D shape is de- 
scribed with a matrix of all intramolecular 
distances between the C a  atoms. Such a 
distance matrix is independent of coordi- 
nate frame but contains more than enough 
information to reconstruct the 3D coordi- 
nates, except for overall chirality, by dis- 
tance geometry methods. 

A comparison algorithm. How can the 
2D matrix comparison be performed? 
Imagine sliding a (transparent) distance 
matrix on top of another one. Depending 
on the register of the two matrices, similar 

substructures will stand out as submatrices 
with similar patterns. This view leads to a 
combinatorial optimization problem of 
merging matching submatrices to larger 
consistent blocks of agreement by the re- 
moval of intervening rows and columns 
(Fig. 2B). Algorithmically, this can be 
treated by a trial-and-error (Monte Carlo) 
method. In the process of optimization, 
structurally equivalent regions can be fil- 
tered out with a fixed cutoff on acceptable 
differences of intramolecular distances or, 
as we c refer. with a continuous function 
defined in terms of relative distance devi- 
ations (6). 

Appropnate decision rules. A t  the end of 
the optimization process, statistical signifi- 
cance of the comparison score for two pro- 
teins can be assessed with empirical criteria 
(calibrated on a large number of known 
examples). The results of the shape compar- 
ison of two proteins are typically reported in 
the form of equivalent sets of residues 
(alignments) (Fig. 2B) or as a 3D view of 
the matched parts of the two proteins (su- 
perimpositions) (Fig. 2A). 

Many algorithms have been adapted to 
the ~roblem of geometrical shape compar- 
ison of proteins, including branch-and- 
bound algorithms, brute force systematic 
searches, subgraph isomorphism algo- 
rithms, stochastic optimization by Monte 
Carlo or simulated annealing ~rotocols. - - 
genetic algorithms, look-up or hashing 
methods, dynamic programming, and clus- 
tering (7). For most practical purposes, the 
algorithmic problem of 3D shape compar- 
ison of proteins (excepting the problem of 
comparing protein surface properties inde- 
pendent of the polymer trace) can be con- 
sidered solved. 

Fig. 1. Protein architecture. The tramtrack protein [Protein Data Bank entry cornplicated.3D shape of proteins is encoded in their linear sequence of 
2drp (30)] is a small protein (525 heavy atoms, 63 residues, and 6 elements amino acids. Side chains stripped off, the polypeptide backbone (thick) 
of secondary structure), yet it exhibits typical modular protein architecture can be seen meandering from the bottom left to the upper right. Regular 
with two compact structural domains, the so-called zinc fingers. (A) The patterns of hydrogen bonding (thin lines) between amide and carbonyl 
most detailed description of atomic positions is required to understand the groups of the polypeptide backbone give rise to secondary structure (37), 
function of the tramtrack protein (gray and black, running left to right), shown schematically in (C) as arrows for P strands and cylinders for a 
which involves binding to a specific base sequence of DNA (white). (B) The helices (with zinc atoms as spheres). 
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Searching 3D Databases 

Beyond comparing two proteins, researchers 
also want to place new protein structures 
relative to the universe of all protein shapes, 
or at least relative to all known protein 
structures. This task is similar to that of 
finding a match to a fingerprint in a data- 
base, but more complicated in that similari- 
ties, and not just identities, are of interest. In 
particular, for a protein structure used as a 
query, researchers want to see all matches 
that score above some similarity threshold 
(for example, such as a threshold defined in 
terms of statistical significance). Our strategy 
for efficient searches in the database of 3D 
structures (2) is to first scan for obvious 
similarities using fast (but, in general, less 
accurate) procedures and then to rescan for 
more subtle similarities using more sophisti- 
cated (but slower) algorithms. We turn be- 
low to a brief description of these algorithms. 

The fast search algorithm achieves sim- 
plification and speedup by representing cer- 
tain repetitive substructures (secondary 
structure elements, such as a helices and P 
strands) that consist of perhaps 50 to 150 
atoms as 3D vectors anchored at well-de- 
fined spatial positions (Fig. 3A). However, 
this simplification can be misleading when 
subtle irregularities in the coordinates lead 
to spurious differences in these vectors for 
proteins that are actually similar in shape. 

The algorithm works by storing, in a way 
convenient for geometrical lookup, a list of 
spatial relations between such vectors taken 
from database proteins (8). Here, lookup 
(or "hashing") is conceptually similar to 
looking up names in a telephone book. The 
lookup procedure matches the vector rela- 
tions taken from the query protein with 
those in the stored list and ~roceeds to 
sample a limited set of spatial superimposi- 
tions whenever enough matches are found - 
between the query protein and a database 
protein. Finally, a dynamic programming 
step refines these superimpositions and gen- 
erates detailed residue-level alignments. 
The search of one structure against the 
structure database of several thousand struc- 
tures typically takes only about 5 min on a 
computer workstation. Other simplified 
methods achieve similar speed (7). In this 
way, a large portion (about 90%) of all 
significant protein-protein shape similari- 
ties can be found (Fig. 3A). 

The slower, more sophisticated algo- 
rithm is designed to deal with the full com- 
binatorial complexity of comparing two 
sha~es  in terms of the s~at ia l  trace of the 
location of residue centers (Ca atoms). As 
the general problem of finding the global 
best alignment of two protein traces has the 
complexity of an NP-hard problem (9), al- 
gorithmic solutions must either settle for an 
approximate solution or risk sifting through 

an exponentially large search space (ap- 
proximately NM possible alignments of a 
sequence of N residues onto a structure 
consisting of M segments of protein trace). 
To  solve this problem to a reasonable ap- 
proximation, we have adapted the elegant 
branch-and-bound algorithm by Lathrop 
and Smith (10) that was originally devel- 
oped for sequence-structure alignment (to 
optimally fit the sequence of protein A into 
the structure of protein B), a problem algo- 
rithmically similar to that of distance ma- 
trix comparison. The algorithm iteratively 
splits the search space of many sequence- 
segment pairings into subsets, calculates an 
upper bound of the objective function for 
each subset, and focuses on further process- 
ing (splitting) the subset with the largest 
upper bound. The chosen series of subsets 
eventuallv leads to a subset that contains 
only a single alignment of protein A with 
protein B, which corresponds to the exact 
global optimum of the objective function 
(Fig. 3B). Continuing the procedure past 
the global optimum yields suboptimal solu- 
tions in monotonically decreasing order. 
Our ada~tation of this branch-and-bound 
procedure replaces the sequence of protein 
A bv the trace of residue centers of  rotei in 
A and thus tests all residue-segment pair- 
ings-that is, all ways of placing residue 
centers of protein A at strategically chosen 
positions in the structure of protein B (at 
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the beginning of all secondary structure seg- 
ments, for example). 

For reasons of efficiency, we couple this 
branch-and-bound algorithm to the hierar- 
chical decomposition of a full structure into 
smaller compact units [similar to "folding 
unit" decomposition or "domain" decompo- 
sition (1 I)]; that is, we perform the compar- 
ison in terms of well-defined substructures. 
Substructure decom~osition is a useful trick 
(heuristic) because a significant match be- 
tween two ~roteins is verv likelv to contain 
significant 'matches bekeen 'well-chosen 
substructures. As a result, most placements of 
residues in protein A onto segments in pro- 
tein B are pruned before they are examined 
explicitly. For example, comparing the struc- 
tures of transducin-a [Protein Data Bank 
code 1 tag, 16 segments (1 2)] wi th that of Ras 
p21 [5p21, 166 residues (13)] leads to a 
nominal search of spatial arrangements, 
although the best solution i s  found after only 
- 11 s on  a fast computer workstation. 

The database search methodology con- 
taining these two algorithms, plus other 
tools, is made available over the Internet to 
users wi th a coordinate data set describing a 
3D protein structure in hand (14). The 
searches aim to address questions such as 
which known   rote ins are related to the 
query protein in evolution, which parts of a 
query structure are most conserved, which 
pairs of proteins have similar internal archi- 
tecture, and does the query protein repre- 
sent a new shape (or new fold) not observed 
to date. 

Classifying 3D Shapes 

Protein scientists are interested not only in 
the evolutionary place of particular pro- 
teins, but also in a grand view of the archi- 
tecture of al l  proteins. Although 10 years 
ago hand-assembled detailed catalogs of al l  
protein structures would have fit into a 
review paper or book (5, 15), efficient al- 
gorithms of shape comparison and their im- 
plementation in computer programs are 
crucial for coping wi th the currently more 
than 4000 structures in the Protein Data 
Bank (2). Currently, Internet servers rather 
than printed publications are the preferred 
medium of dissemination (16). We have 
recently used shape comparison algorithms 
to perform an exhaustive all-on-all compar- 
ison in order to obtain a quantitative and 
obiective overview of the currentlv known 
parts of the protein universe and, if possible, 
to arrive at a classification of architectural 
types. In processing the current database, 
two problems arise, one technical and the 
other conceptual in nature. 

The technical problem i s  one of redun- 
dancy-that is, unequal representation of 
protein families. For example, there are 230 

crystal structures of engineered mutants of with mutual sequence identity greater than 
phage T4 lysozyme. We can remove the 25% (over most of their length, after optimal 
family redundancy by equalizing all proteins sequence alignment) because these have es- 

A Query structure Target structure B 
I Branch-and-bound search 

Target lookup grid Query-target match 

ecur i el li s lu ion 
!Dac:;i$%e:b~unds 

Solution space 

w 

. - .. . 

Fig. 3. Two algorithms. (A) The 30 lookup is a fast 
heuristic alclorithm that catches easy-to-find structur- - ~ 

al similarities and is part of the Dali 3~ search server 
(74). The idea is that in favorable cases, 3D superimposition of only a pair of secondary structure 
elements (SSEs) leads to superimposition of the entire structures. Top: Structure comparison of an SH3 
domain of c-Src kinase [ I  cskA, query structure (33)] with the enzyme papain [ I  ppn, target structure (34)] 
reveals similar domain folds, although there is no sequence relation between the proteins and one is 
much larger. The appropriate orientation of the molecules is found by exhaustive comparison of internal 
coordinate frames of each protein. An internal coordinate frame is defined by an ordered pair of SSEs 
(centering one SSE at the origin, aligning it with they axis, and rotating the molecule around this axis so 
that the center of a second SSE is in the positivex-y plane). Bottom left: Target structure, papain, loaded 
onto the SSE lookup grid. Each pair of SSEs where the segment midpoints are within 12 A defines a 
coordinate frame relative to the grid axes. The figure shows the transformed positions of the 12 SSEs of 
papain (dotted lines) in each of the -1 00 different coordinate frames defined by different pairs of SSEs. 
Bottom right: The target lookup grid is probed with the SH3 domain, which has four SSEs (thick 
continuous lines). The coordinate frames shown are the ones yielding the best 3D match of four 
segments. Iterative extension of a residue-wise alignment starting from the preorientation defined by the 
SSE match shown here leads to the equivalence of 43 Ca atoms with 1.7 A root-mean-square positional 
deviation on an optimal least-squares superimposition. The figure was drawn with MolScript (35). (6) A 
branch-and-bound algorithm (10) is guaranteed to yield the global optimum but may, in the worst case, 
need an exponential number of steps to do so. An implementation of this algorithm is an essential part of 
the Dali 3D search server (14). First, protein structures A and B are represented by distance matrices 
(bottom left and right; each point in a matrix is a residue-residue distance; an intemal square is a set of 
contacts made by two segments; the secondary structure segments are p, p, and a). The problem of 
shape comparison becomes one of finding a best subset of residues in each matrix (subsets of rows and 
columns) such that the set of residues in protein A has a similar pattern of intramolecular distances as the 
set in protein A, as in Fig. 28. A singlesolution to the problem is given in terms of the two sets of equivalent 
residues (an alignment), as shown in Fig. 2C. The solution space consists of all possible placements of 
residues in protein B relative to the segments of residues of protein A. The key algorithmic idea is to 
recursively split the solution subspace (schematically shown as a circle at upper left, in which each point 
is a solution to the problem and the lines divide subsets of solutions) that yields the highest upper bound 
until there is a single alignment trace left: start with the entire circle: calculate the upper bound for the left 
(9) and right (1 7) half: choose the right half and split it into top (upper bound 10) and bottom (upper bound 
16) quarters; choose the bottom part and split it (left: 14; right: 12); choose the right part; and so on until 
the area of solution space has shrunk to a single solution (shown as the residue-residue alignment matrix 
enlarged at right). The upper bound for each part of the solution space is estimated in terms of a simplified 
subproblem that asks for the best match of residues in protein B onto a predefined set of residues in 
protein A (the match is illustrated by the circle-ended line connecting the single square in matrix A with a 
set of candidate squares in matrix B). The best match is the one with the maximal pair score (sum of 
similarities of distances between the square in A and the square in B). The predefined set corresponds to 
residues in secondary structure elements (a, p). The upper bound for each of the segment-segment 
submatrices of matrix A is found by calculating the similarity scores between the submatrix in A and all 
accessible submatrices in 6. An upper bound of the total similarity score (sum over all segment-segment 
submatrices in A) for one set of solutions is given by the sum of separately calculated upper bounds for 
each segment-segment pair of matrix A. The method for choosing constraints that define a set of solutions 
works in terms of defining allowed residue ranges at each stage of the iteration and is not illustrated. 
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sentially complete structural overlap and in 
most cases similar function (17). Removing 
such sequence redundancy from the April 
1996 release of the Protein Data Bank leaves 
a set of 740 representative proteins of known 
structure. Many pairs in this set are still 
structurally similar to each other, in spite of 
strong dissimilarity at the sequence level. 

Next, in attempting to group structurally 
similar proteins within the set of 740 rep- 
resentative proteins, there is a conceptual 

problem, known as the problem of domains. 
Structural similarities within the set of pro- 
teins with unique sequences are typically 
restricted to only parts of the protein struc- 
ture. Similar substructures, with relatively 
sharp boundaries, may recur between sever- 
al proteins, and conversely, many proteins 
can be economically described as combina- 
tions of recurrent substructures (domains). 
The notion of such economical description 
is related to that of minimal encoding in 

info tion theory and, in this context, 
refers to the intuitive goal of defining a 
small set of large substructures in terms of 
which most protein structures can be de- 
scribed. In one attempt to achieve this goal, 
we have combined the notions of compact- 
ness and recurrence of domains. A compact 
domain has minimal surface and maximal 
interior residue-residue contacts. A recur- 
rent domain is one that appears several 
times as a recognizably similar substructure 
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in different oroteins. This leads to an  oaer- 
atlonal d e f l ~ ~ l t i o n  of suhstructures that 
makes use ( i )  of the property that normal- 
ired distance matrix sinlilarity scores are 
strongest for co~uplete  overlap of large  nits 
and (li) of a physical deconlposltion of pro- 
tein structure into a tree of putative folding 
units at all size levels (1 8). Given a database 
of protein shapes, pairlvise s t ruc t~~ra l  sinlilar- 
ities, and alternative decompositions into 
suhstructures, the llotion of nlaxlnlal recur- 
rence IS ~mplemented by selectloll of a set of 
substructures for 1trhic11 the s ~ ~ n l  of simllari- 
ties is maximized across the dat,lbase. As a 
result, the 740 proteins ~ v i t h  unique se- 
quences are split into 1048 domains. 

Given this set of domains, one can now 
group structurally sinlilar donlains in a Itray 
that was not posslble for the set of elltlre 
proteln structures. There are several options 
for cl~~steril lg donlains into eclui\.alence 
groups, none of them, 111 our opinion, ideal. 
W e  chose to group donlains sinl~lar in sh,lpe 
into "domain fold" classes or simply "fold" 
classes by a process of average linkage clus- 
tering (19) .  Disregarding small, irregular 
domains and terminating cluster111g ,it an  
empirically chosen cutoff 111 similarity, the 
r e s ~ ~ l t  1s a set of fold c1,lsses n.hose members 
generally m a t c l ~  over all secondary structure 
elements. This reduces the 1045 do~nains  
into 257 structurally unique folds that de- 
sc r~be  reasonably well the structures of the 
740 sequence-unique proteins out of the 
approximately 4000 knoam protein struc- 
tures. T h e  llst of c ~ ~ r r e n t l v  known fold class- 
es is a good starting point for attempts to 
hetter understand the genesis and diversity 
of protein shapes. 

As Illore and more protein structures are 
cietermined exper~mentally (Fig. 4 ) ,  auto- 
mation of the conlrarlson anci c1'1ssification 
process becomes ~ndispensable. W e  noa. 
continuouslv monitor the rise in structural 
knoaledge in t e r m  of the appearance of 
new entries, new protein families, and new 
fold classes in the  Protein Data Bank 12). ~, 

Simple extrapolation leads us to expect 
10,000 database entries, 1600 sequence- 
unique representative structures (sequence 
families), and 400 fold classes i?v the  end of 
1997. If current trends contmue exponen- 
tially anit n~i thout  saturation, the  3 D  coor- 
dinates of at least 1 representative of up to 
5000 protein sequence f,~milies \\rill be 
known hy the  year 2000. 

Attractors in Shape Space 

Conceptually, each protein structure may he 
imagineil as a point in an ahtract,  111gh- 
tlimensiol~al fold space. A t  close range in this 
fold space, clusters represent proteln families 
related through strong functional constraints 
(for example, hemoglobin and myoglobln). 

A t  intermediate rantre, c l~~sters  are related bv 
shape similarity that does not necessarily re- 
flect si~nilarity of biological fi~nction [for ex- 
ample, globins and colicin A (20)l. A t  long 
range, the o\~erall distribution of folds is dom- 
inated by five densely populated regions, 
~vl11c11 we call attractors (Fig. 5). Although 
the current tlistribution of folds is the result of 
several effects, ~ncludlng database bias, rye put 
forward the hv~othesls that these attractors , L 

represent both dominant foliling pathways 
and evolutionarv s~nlts that are the result of 
physical constraints. 

Which  basis set reuresents fold s~lacel  
W e  have adopted a multivarlate scaling 
method that discerns the aresence or ab- 
sence of sinl~lar features and mathematical- 
ly amounts to solving an  eigenvalue prob- 
lenl (21) .  T h e  nlethod is related to (but 
d~fferent in  detail from) principal compo- 
nent  analysis and has been used, for exam- 
ple, in archaeology, to arrange sites ("indi- 
vlduals") in  a time series based o n  trends in 
the conlposition of e x c a ~ ~ a t e d  artifacts ("at- 
tributes") and, in molecular h~ology, to an- 
alyze the correlation bet~treen cod011 u;age 
and level of gene expression (22) .  I11 our 
application here, the  features are the  simi- 

larity of an  "lndivitlual" structure tcl each 
other "attribute" structure. W e  plotted the 
points in fold spacc in the 2D plane of the 
t ~ v o  iiominant elgenvectors (Fig. 5A) .  

What is the evidence for the attractor 
hypotl~es~s? The  flve dominant pealts in the 
distribution of do~llains in the 2D projection 
of shape space (Fig. i A )  contain dolllaills 
1trit11 sinlilar secondary structure composition 
and cl~aracterist~c topological ~llotifs (second- 
ary structure elenlents plus loop connections). 
In the fc~lded structures, the shared nlotifs are 
not exposed to solvent, so they are liltely to 
for11 early 011 in the folding process and may 
represent nucleation sltes. If this 1s true, the 
diversity of different folds t11,lt contam these 
core motifs n.ould represent alternative evo- 
lutlonary extens~on paths to atld 011 more 
elements (23).  Selective pressure in evolution 
frolll random or partially rantlo~u sequences 
~vould be more likely to result In specifically 
folded stable structures in one of these re- 
gions. Economy of descr~ption, ~trhich under- 
lies our cluantitative derivation. may reflect 
econolvly of construct~on. 

It ~ v o ~ ~ l d  be tenlpting tcl speculate that 
five attractors exha~lst  the particularly ~1111- 

ple of collapsing tx helix anii P 
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Fig. 5. Fold space attrac- A - -- 
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the paiw~lse structural , 

s~rn~lar~t~es in an all-on-all ' 

comparison of protein 
structures allows one to , 
posltion each structure 
relative to the others In 
an abstract, hgh-dmen- 1 

slonal fold space (shape , 
space). The height of the 
peaks reflects popua- 
tlon denslty (of folds in 
fold space) The horizon- - 
t a  axes are the two 
dominant eigenvalues (21),  and the vertlca axis represents the number 
of protein shapes per unit area (logarithmic scale, arb~trary units). The 
long-range d~str~but~on of dfferent architectures IS revealed n a projec- 
tion down onto the plane based on multivarlate scang ,  so that prox- 
imty n the plot corresponds to correlated structural neighborhoods (B) 
Forty percent of a known domains (protein substructures) are covered 
by 16 fold classes (shown as topology dagrams: a ,  a h e x  segment; p, 
p strand segment, thick bar, parallel chain connecton between seg- 
ments, thn bars, antparale connection: arc, a helices crossing at 
roughly right angles). Although each fold class has ~ndvidua features, 
most fold classes map to flve attractor regons (peaks I through V). All 
folds with sheets of many parallel p strands map to attractor I .  The 
parallel p folds contain a pxp unit, where the intewenng segment (x) IS 

requred to reverse chain drecton so that the strands are parallel The 
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Pap unit has a preferred handedness determined by polymer physcs and the natural twst of p strands 
Attractor I I  contains avarety of helical folds The connectvity of elements In the folds of attractors I l l  and 
IV contains meander motfs suggestive of the collapse of a long harpn, ether of p strands only or of p 
strands alternating with a helical pair, (pap), (36) The p zigzag motif of attractor V 1s simply a seres of 
antparallel hairpin connections between sequentially adjacent strands. Elementary polymer physcs 
ndcates that interactions in space between regions of the chain that are close In sequence are much 
more probable than those between sequence-dstant regions. The (3 zigzag motif occurs both In flat 
sheets and barrels, and there 1s consderable variaton In the length of strands (about 4 resdues in 
propeller blades, about 13 in porin barrels). Fold classes other than the most populated 16 are not 
shown but are accessble from the D a  service over the Internet (16). 



strand elements into globular proteins. How- 
ever, other solutions to folding up proteins 
do exist and recur between unrelated fami- 
lies. One such example is the so-called P 
trefoil fold, which has internal threefold 
symmetry; it is described as a cone-shaped 
barrel covered by three P hairpins (24) and 
is not in any of the attractor regions. In 
addition, about 10% of the known fold 
classes map to small clusters that lack sim- 
ilarity to others. How many more attractor 
regions are there? Extrapolating from folds 
that are known to exist, to folds that can 
exist, is a challenging problem (25). We do 
anticipate the emergence of some new basic 
folding patterns from membrane proteins, 
few of which are known in structural detail. 
We would be surprised, however, if the 
number of attractors more than doubled in 
the next 5 years. 

Discovering Evolutionary Links 

As more   rote in structures are determined. 
the placement of each new protein in shape 
space makes a contribution to the completion 
of the map and can, in special cases, lead to a 
considerable gain in biological knowledge. As 
an example, let us examine the steps used in 
unraveling the evolutionary origins of DNA 
polymerase P, a DNA repair enzyme. When 
the structure of DNA polymerase P was 
solved (26), it turned out to be a structural 
outlier compared to three other DNA and 
RNA polymerases of known structure. This 
outlier role seemed to match its peculiarities 

I Kanamycin nucleotidyltransferase 

DNA polymerase !3 
G179 

in function, being smaller and simpler (its 
polymerase action is stepwise rather than con- 
tinuous) than the other polymerases. Both 
features were put in context by the discovery 
(27) of a close structural resemblance to ka- 
namycin nucleotidyltransferase, an enzyme 
conferring antibiotic resistance to bacteria. 
The catalytic domains of DNA polymerase P 
and kanamycin nucleotidyltransferase share 
not only a common substructure, but also a 
sequence signature pattern that maps to the 
nucleoside triphosphate binding site in the 
conserved domains (Fig. 5). Pattern searches 
in sequence databases led to the identification 
of five additional families of nucleotidvltrans- 
ferases that are predicted to contain the same 
substructure res~onsible for the nucleotide 
transfer reaction, which in turn led to the 
definition of an extended enzyme family. In 
spite of their relation in structure and basic 
biochemical function, the biological functions 
of member enzymes are diverse, ranging from 
nucleic acid synthesis to the regulation of 
biosynthetic pathways by nucleotidylation 
(Fig. 6). 

Most evolutionarv links are identified on 
the basis of sequence similarity, but the 
most interesting new discoveries are the 
result of explorations in the "twilight zone" 
of sequence similarity. Shape comparison 
contributes, as it did for DNA polymerase 
p, by helping to identify subtle but charac- 
teristic sequence patterns. The procedure 
has these steps: structural alignment in 3D 
of two or more known structures, definition 
of the pattern of conserved residues in 3D, 

sequence database searches using that pat- 
tern to identify additional candidates, mul- 
tiple sequence alignment in each candidate 
family to check consistency of conservation 
of the search pattern, building explicit 3D 
models by homology, and verification that 
the models are physically plausible in terms 
of sequence-structure fitness (determining 
how well can the amino acid sequence be 
accommodated in the 3D structure). This 
process has already led to the unification of 
several large sets of functionally related pro- 
tein families into extended families, with 
further simplifications expected. 

Completing the Protein Map 

The growth of sequence and function data 
from genome projects and 3D structures from 
experimental structural biology should yield 
a complete catalog of all proteins soon. Or- 
phan sequences, with no known relatives 
detectable by sequence alignment, are al- 
ready diminishing in number (28), and ob- 
servations of the recurrence of similar sub- 
structures in remotelv related   rote ins are 
more frequent. As more experimentally de- 
termined proteins structures become avail- 
able and computational tools improve, mod- 
el building by homology will yield a rapidly 
increasing fraction of all possible 3D models 
of natural proteins. As a result, the protein 
folding problem that has traditionally been 
the focus of computational molecular biolo- 
gy will fade in importance and be replaced by 
other challenges. In time, computational bi- 

Fig. 6. Evolutionary adap- 
tation of enzyme function. 

~1 f - 8  (Al Discoverv of an essen- - . ,  

tial structure-function fea- 
ture by shape compari- 
son. A structure database 
search with DNA polv- 

- - merase B detects kana- 
OH mycin nucleotidyltrans- 

ferase (rather than other 
known DNA or RNA poly- 

OH merase~) as the nearest 
, neighbor in fold space and 

reveals conserved resi- 

tures supporting the active 
site. Following up the lead 
provided by structure da- 
tabase searching with pro- 
file searches in sequence 
databases resulted in the 

identification of the same characteristics in a large superfamily of nucleotidyltransferases. lhe biological 
functions of member families range from DNA repair to regulation of biosynthetic pathways and antibiotic 
resistance (27). (6) Variety of substrate specificity of a common chemical reaction on an essential protein 
substructure is the remarkable result of biological evolution. All member enzymes of this extended family 
unified as a result of shape comparison catalyze a common chemical reaction, the coupling of nucleoside 
triphosphates (black squares and dots) to a free hydroxyl group by means of elimination of pyrophosphate 
[top row: DNA polymerase p, DNA nucleotidyl exotransferase; middle row: polyadenylate polymerase, 
(2'-5') oligoadenylate synthetase, kanamycin nucleot~dyltransferase; bottom row: protein P,, uridylyltrans- 
ferase, glutamine synthetase adenylyltransferase. and streptomycin 3'-adenylyltransferase]. 
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ologists will move beyond the Inere descrip- 
tion of evolutionary relations to a quantita- 
tive and predictive inodel of the evolution 
of proteins. T h e  increasingly complete 
knowledge of protein structure will he used 
as a basis for detailed modeling of protein 
function, protein-protein interactions, and 
rnetaholic or signaling pathways. Mapping 
the protein uiliverse by surveying and clas- 
sifying protein shapes (29) is a key contri- 
bution to these endeavors. 
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