| COMPUTERS ’96: ARTICLES

Mapping the Protein Universe

Liisa Holm and Chris Sander

The comparison of the three-dimensional shapes of protein molecules poses a complex
algorithmic problem. lts solution provides biologists with computational tools to organize
the rapidly growing set of thousands of known protein shapes, to identify new types of
protein architecture, and to discover unexpected evolutionary relations, reaching back
billions of years, between protein molecules. Protein shape comparison also improves
tools for identifying gene functions in genome databases by defining the essential
sequence-structure features of a protein family. Finally, an exhaustive all-on-all shape
comparison provides a map of physical attractor regions in the abstract shape space of
proteins, with implications for the processes of protein folding and evolution.

Ira living cell is viewed as a biochemical
factory, then its main workers are protein
molecules, acting as catalysts, transporters,
and messengers, among other roles. A hu-
man genome encodes about 100,000 of
these biological macromolecules. Their
functional diversity is made possible by the
diversity of three-dimensional (3D) protein
shapes, also called “structures,” which are
capable of highly specific molecular recog-
nition. Understanding or simulating the
molecular processes involved in the forma-
tion of protein structures and in their bio-
logical function is a major challenge of
molecular biology. However, in spite of
many years of focused research, we still lack
a comprehensive and accurate theory of
protein structure based on physical and
chemical principles. Fortunately, and per-
haps unexpectedly, a practical solution to
the problem of predicting protein shape and
function from amino acid sequence (and
thus, ultimately, from nucleotide sequence)
is provided by nature itself. Molecular evo-
lution has resulted in a dense network of
kinship relations between proteins. By in-
ferring characteristics of one protein based
on the function or structure of its relatives,
biologists exploit these evolutionary rela-
tions to predict protein shape or functional
properties.

This exploitation of evolutionary con-
nectivity has become possible because of a
wealth of molecular data about proteins
from many different species. To date, bi-
ologists have read the complete nucleotide
(and thus amino acid) sequences of well
over 100,000 protein genes (1), and x-ray
crystallographers and nuclear magnetic
resonance spectroscopists have deter-
mined the 3D shapes of several thousand
protein molecules (2). The molecular pa-
leontology based on these data reveals a
remarkable continuity of molecular evolu-
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tion. The biochemical function of many
proteins has persisted over large evolu-
tionary time scales (even when cellular
context has changed, such as in the tran-
sition from cells without a nucleus to
those with a nucleus). As a protein mole-
cule with an essential functional role
evolves in the context of a living cell, a
small number of amino acid residues crucial
for its function tend to be strongly con-
served (for example, residues that form a
catalytically active site), while the rest of
the protein sequence eventually undergoes
considerable changes. The overall 3D struc-
ture also tends to remain essentially unal-
tered, even when all sequence memory ap-
pears to have been lost. This evolutionary
resilience of protein 3D structure is the
fundamental reason for the importance of
protein shape comparison as a computa-
tional method in molecular biology.

Recent advances in molecular and struc-
tural biology have led to the determination
of many 3D protein structures. This article
reviews how solving the geometrical shape
comparison problem leads to interesting
evolutionary observations, to the prediction
of function and structure in particular cases,
and, on the basis of an all-on-all compari-
son, to an understanding of the distribution
of known structures in shape space.

Comparison by Sequence
or by Shape?

Exploiting the observation of evolutionary
connections between proteins in order to
predict some aspects of structure or func-
tion is simple in principle. If a protein is
found to be evolutionarily related to an-
other, then information about the func-
tion (or shape or enzymatic mechanism,
among other attributes) of the one protein
can be inferred from that of the other,
with varying degrees of accuracy, depend-
ing on the evolutionary distance between
them. The question then arises as to how
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evolutionary connections are best detect-
ed: by amino acid sequence comparison in
1D or by shape comparison in 3D?

The answer depends on the time inter-
val that has elapsed since the presence of a
common ancestor presumed to be similar in
function and structure to the two extant
descendants. At close evolutionary distanc-
es, string comparison between two protein
sequences often suffices to establish evolu-
tionary kinship. At larger evolutionary dis-
tances, more sophisticated methods must be
used to identify subtle similarities in se-
quence patterns. For example, a method
that uses sequence profiles compares prob-
ability values for each of 20 amino acids at
matching positions in the two proteins un-
der comparison. The most distant relations,
however, are no longer detectable by cur-
rent sequence analysis methods, however
sophisticated, and require comparison of
the 3D shapes of proteins.

Technically, protein sequence compari-
son is simpler than shape comparison and is
routinely used in studies of protein evolu-
tion. Shape comparison can be used only if
3D structures are available (currently in a
few percent of all cases), but it is more
sophisticated and more powerful than se-
quence comparison, because similarity of
shape remains detectable even though the
sequence may have changed beyond recog-
nition in the course of evolution. Compar-
ing protein shapes rather than protein se-
quences is like using a bigger telescope that
looks farther into the universe, and thus
farther back in time, opening the door to
detecting the most remote and most fasci-
nating evolutionary relations.

An example of what can be done with
protein shape comparison is the discovery
of a common structural core (a common
set of structural elements similarly ar-
ranged in space) in two apparently unre-
lated enzymes from different species with
apparently different amino acid sequences.
One is mammalian glycogen phosphoryl-
ase, a central control point in energy me-
tabolism; the other is a DNA glucosyl-
transferase that protects the DNA of
phage T4 against its own nucleases as it
degrades the host’s genome (3). Their
shape similarity reflects a common chem-
ical mechanism of diphosphate- and sugar-
based chemistry, but their substrate spec-
ificities and cellular functions, and even
their sizes, are very different. Methods for
3D shape comparison were instrumental in
this discovery.
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Matching 3D Shapes

In geometrical and algorithmic terms,
what is involved in shape comparison of
two proteins? First of all, a typical 300-
residue protein has about 3000 atoms dis-
tributed in space according to the convo-
luted (“folded”) trajectory of the polymer
chain. Recognizing common substructures
between two such structures is in general a
very complex combinatorial problem
(which points in A are equivalent to
which points in B?). The human visual
system is very good at recognizing shapes;
indeed, classical abstractions of protein
architecture (Fig. 1) were established by
structural biologists using visual inspec-
tion of structures (4, 5). However, as the
number of known structures rapidly in-
creased, visual inspection as a general
method became inadequate because a hu-
man brain cannot easily store the shapes
of thousands of complicated macromole-
cules and cannot easily process the large
set of possible substructures. Computers
have the advantage of tremendous stor-
age capacity and processing speed but
need adequate software. Software devel-
opment for shape comparison requires (i)
a suitable representation of the objects
of study, (ii) an objective function to be
optimized by (iii) a comparison algorithm,
and (iv) appropriate decision rules concern-
ing the significance of the result. Let us look
at one way of approaching protein shape
comparison.

A suitable representation. To make the
problem computationally tractable, one
first simplifies the representation of protein
shapes, keeping essential features. For ex-
ample, the complicated atomic structure

Fig. 1. Protein architecture. The tramtrack protein [Protein Data Bank entry
2drp (30)] is a small protein (525 heavy atoms, 63 residues, and 6 elements
of secondary structure), yet it exhibits typical modular protein architecture
with two compact structural domains, the so-called zinc fingers. (A} The
most detailed description of atomic positions is required to understand the
function of the tramtrack protein (gray and black, running left to right),
which involves binding to a specific base sequence of DNA (white). (B) The
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can be represented as a chain trace, that s,
the ordered succession of residue centers
(Ca atoms) described by their x, ¥y, z coor-
dinates (which accounts for about 1 atom
out of every 10 in the protein). In these
terms, the objective of a comparison of two
protein shapes is an assignment of one-to-
one equivalence between the Ca atoms,
where nonmatching residue centers can be
skipped in either chain. In most applica-
tions, one also requires that the linear order
of equivalent pairs along the sequence is
maintained, that is, that the continuity of
the polymer chain is considered a key as-
pect of shape.

An objective function to be optimized.
Geometrical objective functions can be
formulated in terms of inter- or intramo-
lecular distances yielding, respectively, 3D
and 2D comparison problems (Fig. 2). In
3D comparison, one explicitly rotates and
translates one molecule relative to the
other and measures intermolecular dis-
tances between equivalent points in the
two chains (Fig. 2A). The objective is to
accommodate the largest possible number
of equivalent points within small devia-
tions in position, typically less than 2 to 3
A. In 2D comparison, 3D shape is de-
scribed with a matrix of all intramolecular
distances between the Ca atoms. Such a
distance matrix is independent of coordi-
nate frame but contains more than enough
information to reconstruct the 3D coordi-
nates, except for overall chirality, by dis-
tance geometry methods.

A comparison algorithm. How can the
2D matrix comparison be performed?
Imagine sliding a (transparent) distance
matrix on top of another one. Depending
on the register of the two matrices, similar
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substructures will stand out as submatrices
with similar patterns. This view leads to a
combinatorial optimization problem of
merging matching submatrices to larger
consistent blocks of agreement by the re-
moval of intervening rows and columns
(Fig. 2B). Algorithmically, this can be
treated by a trial-and-error (Monte Carlo)
method. In the process of optimization,
structurally equivalent regions can be fil-
tered out with a fixed cutoff on acceptable
differences of intramolecular distances or,
as we prefer, with a continuous function
defined in terms of relative distance devi-
ations (6).

Appropriate decision rules. At the end of
the optimization process, statistical signifi-
cance of the comparison score for two pro-
teins can be assessed with empirical criteria
(calibrated on a large number of known
examples). The results of the shape compar-
ison of two proteins are typically reported in
the form of equivalent sets of residues
(alignments) (Fig. 2B) or as a 3D view of
the matched parts of the two proteins (su-
perimpositions) (Fig. 2A).

Many algorithms have been adapted to
the problem of geometrical shape compar-
ison of proteins, including branch-and-
bound algorithms, brute force systematic
searches, subgraph isomorphism algo-
rithms, stochastic optimization by Monte
Carlo or simulated annealing protocols,
genetic algorithms, look-up or hashing
methods, dynamic programming, and clus-
tering (7). For most practical purposes, the
algorithmic problem of 3D shape compar-
ison of proteins (excepting the problem of
comparing protein surface properties inde-
pendent of the polymer trace) can be con-
sidered solved.

complicated 3D shape of proteins is encoded in their linear sequence of
amino acids. Side chains stripped off, the polypeptide backbone (thick)
can be seen meandering from the bottom left to the upper right. Regular
patterns of hydrogen bonding (thin lines) between amide and carbony!
groups of the polypeptide backbone give rise to secondary structure (37),
shown schematically in (C) as arrows for B strands and cylinders for «
helices (with zinc atoms as spheres).



Searching 3D Databases

Beyond comparing two proteins, researchers
also want to place new protein structures
relative to the universe of all protein shapes,
or at least relative to all known protein
structures. This task is similar to that of
finding a match to a fingerprint in a data-
base, but more complicated in that similari-
ties, and not just identities, are of interest. In
particular, for a protein structure used as a
query, researchers want to see all matches
that score above some similarity threshold
(for example, such as a threshold defined in
terms of statistical significance). Our strategy
for efficient searches in the database of 3D
structures (2) is to first scan for obvious
similarities using fast (but, in general, less
accurate) procedures and then to rescan for
more subtle similarities using more sophisti-
cated (but slower) algorithms. We turn be-
low to a brief description of these algorithms.

The fast search algorithm achieves sim-
plification and speedup by representing cer-
tain repetitive substructures (secondary
structure elements, such as a helices and 8
strands) that consist of perhaps 50 to 150
atoms as 3D vectors anchored at well-de-
fined spatial positions (Fig. 3A). However,
this simplification can be misleading when
subtle irregularities in the coordinates lead
to spurious differences in these vectors for
proteins that are actually similar in shape.

A

The algorithm works by storing, in a way
convenient for geometrical lookup, a list of
spatial relations between such vectors taken
from database proteins (8). Here, lookup
(or “hashing”) is conceptually similar to
looking up names in a telephone book. The
lookup procedure matches the vector rela-
tions taken from the query protein with
those in the stored list and proceeds to
sample a limited set of spatial superimposi-
tions whenever enough matches are found
between the query protein and a database
protein. Finally, a dynamic programming
step refines these superimpositions and gen-
erates detailed residue-level alignments.
The search of one structure against the
structure database of several thousand struc-
tures typically takes only about 5 min on a
computer workstation. Other simplified
methods achieve similar speed (7). In this
way, a large portion (about 90%) of all
significant protein-protein shape similari-
ties can be found (Fig. 3A).

The slower, more sophisticated algo-
rithm is designed to deal with the full com-
binatorial complexity of comparing two
shapes in terms of the spatial trace of the
location of residue centers (Ca atoms). As
the general problem of finding the global
best alignment of two protein traces has the
complexity of an NP-hard problem (9), al-
gorithmic solutions must either settle for an
approximate solution or risk sifting through
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an exponentially large search space (ap-
proximately N™ possible alignments of a
sequence of N residues onto a structure
consisting of M segments of protein trace).
To solve this problem to a reasonable ap-
proximation, we have adapted the elegant
branch-and-bound algorithm by Lathrop
and Smith (10) that was originally devel-
oped for sequence-structure alignment (to
optimally fit the sequence of protein A into
the structure of protein B), a problem algo-
rithmically similar to that of distance ma-
trix comparison. The algorithm iteratively
splits the search space of many sequence-
segment pairings into subsets, calculates an
upper bound of the objective function for
each subset, and focuses on further process-
ing (splitting) the subset with the largest
upper bound. The chosen series of subsets
eventually leads to a subset that contains
only a single alignment of protein A with
protein B, which corresponds to the exact
global optimum of the objective function
(Fig. 3B). Continuing the procedure past
the global optimum yields suboptimal solu-
tions in monotonically decreasing order.
Qur adaptation of this branch-and-bound
procedure replaces the sequence of protein
A by the trace of residue centers of protein
A and thus tests all residue-segment pair-
ings—that is, all ways of placing residue
centers of protein A at strategically chosen
positions in the structure of protein B (at

3D

Unaligned

Aligned 2D

iD

Fig. 2. The meaning of structural equivalence. Shape comparison aims at the
one-to-one enumeration of equivalent polymer units in two protein mole-
cules. The problem and solution can be represented in 3D, as a rigid-body
superimposition; in 2D, as similar patterns in distance matrices; orin 1D, as
an alignment of amino acid sequences. Here, the comparison of the
tramtrack protein with another zinc finger protein, the human enhancer-
binding protein MBP-1 [Protein Data Base entry 1bbo (32)], is used as an
example. (A) In the 3D comparison, the problem is to find a translation and
rotation of one molecule (red: 1bbo) onto the other (blue: 2drpA). The 3D
superimposition (residue centers only, green lines join equivalenced residue
centers, zinc atoms as spheres) is not exact because of an internal rotation of
the two zinc finger domains relative to one another. (B) The 2D distance
matrices reveal the conserved structure of the zinc fingers (left: distance
matrices of the whole structures; black dots are intramolecular distances less
than 12 A, 1bbo at bottom and 2drpA on top; right: distance matrices
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brought into register by keeping only rows or columns corresponding to
structurally equivalent residues). (C) One-dimensional alignment of amino
acid strings in the single-letter code; abbreviations for the amino acid resi-
dues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; |,
lle; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gin; R, Arg; S, Ser; T, Thr; V, Val;
W, Trp; and Y, Tyr. Evolutionary comparison aligns the histidine (H) residues
involved in zinc binding (bold; helices and strands of secondary structure are
underlined).
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the beginning of all secondary structure seg-
ments, for example).

For reasons of efficiency, we couple this
branch-and-bound algorithm to the hierar-
chical decomposition of a full structure into
smaller compact units [similar to “folding
unit” decomposition or “domain” decompo-
sition (11)]; that is, we perform the compar-
ison in terms of well-defined substructures.
Substructure decomposition is a useful erick
(heuristic) because a significant match be-
tween two proteins is very likely to contain
significant matches between well-chosen
substructures. As a result, most placements of
residues in protein A onto segments in pro-
tein B are pruned before they are examined
explicitly. For example, comparing the struc-
tures of transducin-a [Protein Data Bank
code ltag, 16 segments (12)] with that of Ras
p2l [5p21, 166 residues (13)] leads to a
nominal search of 10*® spatial arrangements,
although the best solution is found after only
~11 s on a fast computer workstation.

The database search methodology con-
taining these two algorithms, plus other
tools, is made available over the Internet to
users with a coordinate data set describing a
3D protein structure in hand (14). The
searches aim to address questions such as
which known proteins are related to the
query protein in evolution, which parts of a
query structure are most conserved, which
pairs of proteins have similar internal archi-
tecture, and does the query protein repre-
sent a new shape (or new fold) not observed
to date.

Classifying 3D Shapes

Protein scientists are interested not only in
the evolutionary place of particular pro-
teins, but also in a grand view of the archi-
tecture of all proteins. Although 10 years
ago hand-assembled detailed catalogs of all
protein structures would have fit into a
review paper or book (5, 15), efficient al-
gorithms of shape comparison and their im-
plementation in computer programs are
crucial for coping with the currently more
than 4000 structures in the Protein Data
Bank (2). Currently, Internet servers rather
than printed publications are the preferred
medium of dissemination (16). We have
recently used shape comparison algorithms
to perform an exhaustive all-on-all compar-
ison in order to obtain a quantitative and
objective overview of the currently known
parts of the protein universe and, if possible,
to arrive at a classification of architectural
types. In processing the current database,
two problems arise, one technical and the
other conceptual in nature.

The technical problem is one of redun-
dancy—that is, unequal representation of
protein families. For example, there are 230
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crystal structures of engineered mutants of with mutual sequence identity greater than
phage T4 lysozyme. We can remove the 25% (over most of their length, after optimal
family redundancy by equalizing all proteins  sequence alignment) because these have es-

Query structure

Target structure

Branch-and-bound search

I
]
I

Recursively split solution
space using upper bounds

Query-target match

Fig. 3. Two algorithms. (A) The 3D lookup is a fast = D | B '
heuristic algorithm that catches easy-to-find structur-

al similarities and is part of the Dali 3D search server

(14). The idea is that in favorable cases, 3D superimposition of only a pair of secondary structure
elements (SSEs) leads to superimposition of the entire structures. Top: Structure comparison of an SH3
domain of c-Src kinase [1cskA, query structure (33)] with the enzyme papain [1ppn, target structure (34)]
reveals similar domain folds, although there is no sequence relation between the proteins and one is
much larger. The appropriate orientation of the molecules is found by exhaustive comparison of internal
coordinate frames of each protein. An internal coordinate frame is defined by an ordered pair of SSEs
(centering one SSE at the origin, aligning it with the y axis, and rotating the molecule around this axis so
that the center of a second SSE is in the positive x-y plane). Bottom left: Target structure, papain, loaded
onto the SSE lookup grid. Each pair of SSEs where the segment midpoints are within 12 A defines a
coordinate frame relative to the grid axes. The figure shows the transformed positions of the 12 SSEs of
papain (dotted lines) in each of the ~100 different coordinate frames defined by different pairs of SSEs.
Bottom right: The target lookup grid is probed with the SH3 domain, which has four SSEs (thick
continuous lines). The coordinate frames shown are the ones vielding the best 3D match of four
segments. lterative extension of a residue-wise alignment starting from the preorientation defined by the
SSE match shown here leads to the equivalence of 43 Ca atoms with 1.7 A root-mean-square positional
deviation on an optimal least-squares superimposition. The figure was drawn with MolScript (35). (B) A
branch-and-bound algorithm (70) is guaranteed to yield the global optimum but may, in the worst case,
need an exponential number of steps to do so. An implementation of this algorithm is an essential part of
the Dali 3D search server (74). First, protein structures A and B are represented by distance matrices
(bottom left and right; each point in a matrix is a residue-residue distance; an internal square is a set of
contacts made by two segments; the secondary structure segments are B, B, and «). The problem of
shape comparison becomes one of finding a best subset of residues in each matrix (subsets of rows and
columns) such that the set of residues in protein A has a similar pattern of intramolecular distances as the
setin protein A, as in Fig. 28. A single solution to the problem is given in terms of the two sets of equivalent
residues (an alignment), as shown in Fig. 2C. The solution space consists of all possible placements of
residues in protein B relative to the segments of residues of protein A. The key algorithmic idea is to
recursively split the solution subspace (schematically shown as a circle at upper left, in which each point
is a solution to the problem and the lines divide subsets of solutions) that yields the highest upper bound
until there is a single alignment trace left: start with the entire circle; calculate the upper bound for the left
(9) and right (17) half;, choose the right half and split it into top (Upper bound 10) and bottom (upper bound
16) quarters; choose the bottom part and split it (left: 14, right: 12); choose the right part; and so on until
the area of solution space has shrunk to a single solution (shown as the residue-residue alignment matrix
enlarged at right). The upper bound for each part of the solution space is estimated in terms of a simplified
subproblem that asks for the best match of residues in protein B onto a predefined set of residues in
protein A (the match is illustrated by the circle-ended line connecting the single square in matrix A with a
set of candidate squares in matrix B). The best match is the one with the maximal pair score (sum of
similarities of distances between the square in A and the square in B). The predefined set corresponds to
residues in secondary structure elements (a, B). The upper bound for each of the segment-segment
submatrices of matrix A is found by calculating the similarity scores between the submatrix in A and all
accessible submatrices in B. An upper bound of the total similarity score (sum over all segment-segment
submatrices in A) for one set of solutions is given by the sum of separately calculated upper bounds for
each segment-segment pair of matrix A. The method for choosing constraints that define a set of solutions
works in terms of defining allowed residue ranges at each stage of the iteration and is not illustrated.
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sentially complete structural overlap and in
most cases similar function (17). Removing
such sequence redundancy from the April
1996 release of the Protein Data Bank leaves
a set of 740 representative proteins of known
structure. Many pairs in this set are still
structurally similar to each other, in spite of
strong dissimilarity at the sequence level.
Next, in attempting to group structurally
similar proteins within the set of 740 rep-
resentative proteins, there is a conceptual

problem, known as the problem of domains.
Structural similarities within the set of pro-
teins with unique sequences are typically
restricted to only parts of the protein struc-
ture. Similar substructures, with relatively
sharp boundaries, may recur between sever-
al proteins, and conversely, many proteins
can be economically described as combina-
tions of recurrent substructures (domains).
The notion of such economical description
is related to that of minimal encoding in
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information theory and, in this context,
refers to the intuitive goal of defining a
small set of large substructures in terms of
which most protein structures can be de-
scribed. In one attempt to achieve this goal,
we have combined the notions of compact-
ness and recurrence of domains. A compact
domain has minimal surface and maximal
interior residue-residue contacts. A recur-
rent domain is one that appears several
times as a recognizably similar substructure
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Fig. 4. Recurrent folds. (A) A small number of fre-
quently occurring domains (folds) covers a large frac-
tion of all known protein structures. The 287 structur-
ally unique protein domains (folds) are ranked in de-

scending order of occurrence in the representative
set of 740 proteins. Domains ranked 1 through 16
occur 10 or more times each. Domains ranked 1 through 26 cover 50% of all known structures—that is, the
essential parts of these structures can be constructed from these domains or described in terms of these
domains (within the limits of similarity within a domain class). Domains ranked about 170 or higher occur
only once in the current database (singlets). (B) Examples of frequently observed fold classes, with one class
from each of the attractor regions in Fig. 5 (each attractor region contains several classes, where the term
“class" is defined in the text). Color coding indicates which parts of the fold are present in more or fewer
members of the class. The color changes from light blue (regions present in 100% of members of the fold
class) to red (0% occupancy). The representative classes are defined as follows (attractor, class name, and
number of recurrences in sequence-unique set of 740 structures): attractor |: parallel g: COOH-terminal
domain of succinyl-CoA synthetase B chain (126); attractor Il: B-meander: mouse opg2 immunoglobulin
heavy chain variable domain (52); attractor Ill: a-helical: myoglobin (15); attractor IV: B-zigzag: COOH-
terminal domain of pertussis toxin (14); and attractor V: « meander: COOH-terminal domain of phospho-
glycerate dehydrogenase (14). Note that other fold classes in the same attractor region are not shown, but
the most frequently occurring are shown in Fig. 5B. (C) Growth and redundancy of protein 3D structures in
the Protein Data Bank (2). Entry: one of currently more than 4000 sets of protein coordinates in the PDB.
Family: collection of proteins set as equivalent if pairwise sequence identity exceeds 25%. Fold: fold class as
defined above. The number of new structure entries grows rapidly in time (note logarithmic scale). Redun-

dancy is defined in terms of sequence similarity (sequence families) or structure similarity (fold classes). Currently, there are about 6.4 entries per sequence family
and 2.4 families per fold class, for a total of 15 entries per fold. One may expect that in the near future a new fold will appear for about every 15 new entries. The
curve of new folds lags behind the curve of sequence-unique families, which indicates the increasing frequency of recurrent folds in newly solved structures
(although this may be the result of bias in experimental work). There is no indication that the growth in new fold classes is slowing down at present.
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in different proteins. This leads to an oper-
ational definition of substructures that
makes use (i) of the property that normal-
ized distance matrix similarity scores are
strongest for complete overlap of large units
and (ii) of a physical decomposition of pro-
tein structure into a tree of putative folding
units at all size levels (18). Given a database
of protein shapes, pairwise structural similar-
ities, and alternative decompositions into
substructures, the notion of maximal recur-
rence is implemented by selection of a set of
substructures for which the sum of similari-
ties is maximized across the database. As a
result, the 740 proteins with unique se-
quences are split into 1048 domains.

Given this set of domains, one can now
group structurally similar domains in a way
that was not possible for the set of entire
protein structures. There are several options
for clustering domains into equivalence
groups, none of them, in our opinion, ideal.
We chose to group domains similar in shape
into “domain fold” classes or simply “fold”
classes by a process of average linkage clus-
tering (19). Disregarding small, irregular
domains and terminating clustering at an
empirically chosen cutoff in similarity, the
result is a set of fold classes whose members
generally match over all secondary structure
elements. This reduces the 1048 domains
into 287 structurally unique folds that de-
scribe reasonably well the structures of the
740 sequence-unique proteins out of the
approximately 4000 known protein struc-
tures. The list of currently known fold class-
es is a good starting point for attempts to
better understand the genesis and diversity
of protein shapes.

As more and more protein structures are
determined experimentally (Fig. 4), auto-
mation of the comparison and classification
process becomes indispensable. We now
continuously monitor the rise in structural
knowledge in terms of the appearance of
new entries, new protein families, and new
fold classes in the Protein Data Bank (2).
Simple extrapolation leads us to expect
10,000 database entries, 1600 sequence-
unique representative structures (sequence
families), and 400 fold classes by the end of
1997. If current trends continue exponen-
tially and without saturation, the 3D coor-
dinates of at least 1 representative of up to
5000 protein sequence families will be
known by the year 2000.

Attractors in Shape Space

Conceptually, each protein structure may be
imagined as a point in an abstract, high-
dimensional fold space. At close range in this
fold space, clusters represent protein families
related through strong functional constraints
(for example, hemoglobin and myoglobin).
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At intermediate range, clusters are related by
shape similarity that does not necessarily re-
flect similarity of biological function [for ex-
ample, globins and colicin A (20)]. At long
range, the overall distribution of folds is dom-
inated by five densely populated regions,
which we call attractors (Fig. 5). Although
the current distribution of folds is the result of
several effects, including database bias, we put
forward the hypothesis that these attractors
represent both dominant folding pathways
and evolutionary sinks that are the result of
physical constraints.

Which basis set represents fold space?
We have adopted a multivariate scaling
method that discerns the presence or ab-
sence of similar features and mathematical-
ly amounts to solving an eigenvalue prob-
lem (21). The method is related to (but
different in detail from) principal compo-
nent analysis and has been used, for exam-
ple, in archaeology, to arrange sites (“indi-
viduals”) in a time series based on trends in
the composition of excavated artifacts (“at-
tributes”) and, in molecular biology, to an-
alyze the correlation between codon usage
and level of gene expression (22). In our
application here, the features are the simi-

Fig. 5. Fold space attrac-

o A T e, B
tors. (A) Quantification of 7 i ! |
the pairwise structural T ! F-é p—
AN — : ! Bupapep BeBEPBpup
smlarltles in an alI-on-gII ! ) i i
comparison of protein | p— p— p— o
structures allows one to B w « w o m apo
position each structure ' |
relative to the others in = =
an abstract, high-dimen- i / pspupe  fobahofie
sional fold space (shape gt A 7 Attractor I: parallel B
space). The height of the I" %
peaks reflects popula- : 7 T TuhThes BBBBBERD
tion density (of folds in : 'z?{'zi:.;i;gg:‘,’;’;:z,{;&,,’: |EL1‘B~J ey
: S s s v - L=
fold space). The horizon- o Alractor I:
tal axes are the two 0 Fli wB o :
dominant eigenvalues (27), and the vertical axis represents the number L)t f{-meander
of protein shapes per unit area (Iogarithmlc scale, arbnrary‘ units). The -
long-range distribution of different architectures is revealed in a projec- o froe o
tion down onto the plane based on multivariate scaling, so that prox- T .
cotagoa eBoala

imity in the plot corresponds to correlated structural neighborhoods. (B)
Forty percent of all known domains (protein substructures) are covered
by 16 fold classes (shown as topology diagrams; «, « helix segment; B,
B strand segment; thick bar, parallel chain connection between seg-
ments; thin bars, antiparallel connection; arc, « helices crossing at
roughly right angles). Although each fold class has individual features,
most fold classes map to five attractor regions (peaks | through V). All
folds with sheets of mainly parallel 8 strands map to attractor |. The
parallel g folds contain a BxB unit, where the intervening segment (x) is

larity of an “individual” structure to each
other “attribute” structure. We plotted the
points in fold space in the 2D plane of the
two dominant eigenvectors (Fig. 5A).

What is the evidence for the attractor
hypothesis? The five dominant peaks in the
distribution of domains in the 2D projection
of shape space (Fig. 5A) contain domains
with similar secondary structure composition
and characteristic topological motifs (second-
ary structure elements plus loop connections).
In the folded structures, the shared motifs are
not exposed to solvent, so they are likely to
form early on in the folding process and may
represent nucleation sites. If this is true, the
diversity of different folds that contain these
core motifs would represent alternative evo-
lutionary extension paths to add on more
elements (23). Selective pressure in evolution
from random or partially random sequences
would be more likely to result in specifically
folded stable structures in one of these re-
gions. Economy of description, which under-
lies our quantitative derivation, may reflect
economy of construction.

It would be tempting to speculate that
five attractors exhaust the particularly sim-
ple pathways of collapsing « helix and B

Attractor [Il: ¢-helical

=
B 3B Attractor 1V:
BpBE

E?E_’} o h_lﬁ f-zigzag
=1
| Attractor V:

BoBBoB  gp-meander

required to reverse chain direction so that the strands are parallel. The

Ba unit has a preferred handedness determined by polymer physics and the natural twist of g strands.
Attractor Il contains a variety of helical folds. The connectivity of elements in the folds of attractors Ill and
IV contains meander motifs suggestive of the collapse of a long hairpin, either of B strands only or of 8
strands alternating with a helical pair, (BxB), (36). The B zigzag motif of attractor V is simply a series of
antiparallel hairpin connections between sequentially adjacent strands. Elementary polymer physics
indicates that interactions in space between regions of the chain that are close in sequence are much
more probable than those between sequence-distant regions. The B zigzag motif occurs both in flat
sheets and barrels, and there is considerable variation in the length of strands (about 4 residues in
propeller blades, about 13 in porin barrels). Fold classes other than the most populated 16 are not
shown but are accessible from the Dali service over the Internet (76).
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strand elements into globular proteins. How-
ever, other solutions to folding up proteins
do exist and recur between unrelated fami-
lies. One such example is the so-called B8
trefoil fold, which has internal threefold
symmetry; it is described as a cone-shaped
barrel covered by three B hairpins (24) and
is not in any of the attractor regions. In
addition, about 10% of the known fold
classes map to small clusters that lack sim-
ilarity to others. How many more attractor
regions are there? Extrapolating from folds
that are known to exist, to folds that can
exist, is a challenging problem (25). We do
anticipate the emergence of some new basic
folding patterns from membrane proteins,
few of which are known in structural detail.
We would be surprised, however, if the
number of attractors more than doubled in
the next 5 years.

Discovering Evolutionary Links

As more protein structures are determined,
the placement of each new protein in shape
space makes a contribution to the completion
of the map and can, in special cases, lead to a
considerable gain in biological knowledge. As
an example, let us examine the steps used in
unraveling the evolutionary origins of DNA
polymerase B, a DNA repair enzyme. When
the structure of DNA polymerase B was
solved (26), it turned out to be a structural
outlier compared to three other DNA and
RNA polymerases of known structure. This
outlier role seemed to match its peculiarities

A

‘ Kanamycin nucleotidyltransferase ‘

in function, being smaller and simpler (its
polymerase action is stepwise rather than con-
tinuous) than the other polymerases. Both
features were put in context by the discovery
(27) of a close structural resemblance to ka-
namycin nucleotidyltransferase, an enzyme
conferring antibiotic resistance to bacteria.
The catalytic domains of DNA polymerase 8
and kanamycin nucleotidyltransferase share
not only a common substructure, but also a
sequence signature pattern that maps to the
nucleoside triphosphate binding site in the
conserved domains (Fig. 5). Pattern searches
in sequence databases led to the identification
of five additional families of nucleotidyltrans-
ferases that are predicted to contain the same
substructure responsible for the nucleotide
transfer reaction, which in turn led to the
definition of an extended enzyme family. In
spite of their relation in structure and basic
biochemical function, the biological functions
of member enzymes are diverse, ranging from
nucleic acid synthesis to the regulation of
biosynthetic pathways by nucleotidylation
(Fig. 6).

Most evolutionary links are identified on
the basis of sequence similarity, but the
most interesting new discoveries are the
result of explorations in the “twilight zone”
of sequence similarity. Shape comparison
contributes, as it did for DNA polymerase
B, by helping to identify subtle but charac-
teristic sequence patterns. The procedure
has these steps: structural alignment in 3D
of two or more known structures, definition
of the pattern of conserved residues in 3D,

A
protein

sequence database searches using that pat-
tern to identify additional candidates, mul-
tiple sequence alignment in each candidate
family to check consistency of conservation
of the search pattern, building explicit 3D
models by homology, and verification that
the models are physically plausible in terms
of sequence-structure fitness {determining
how well can the amino acid sequence be
accommodated in the 3D structure). This
process has already led to the unification of
several large sets of functionally related pro-
tein families into extended families, with
further simplifications expected.

Completing the Protein Map

The growth of sequence and function data
from genome projects and 3D structures from
experimental structural biology should yield
a complete catalog of all proteins soon. Or-
phan sequences, with no known relatives
detectable by sequence alignment, are al-
ready diminishing in number (28), and ob-
servations of the recurrence of similar sub-
structures in remotely related proteins are
more frequent. As more experimentally de-
termined proteins structures become avail-
able and computational tools improve, mod-
el building by homology will yield a rapidly
increasing fraction of all possible 3D models
of natural proteins. As a result, the protein
folding problem that has traditionally been
the focus of computational molecular biolo-
gy will fade in importance and be replaced by
other challenges. In time, computational bi-

Fig. 6. Evolutionary adap-
tation of enzyme function.
(A) Discovery of an essen-
tial structure-function fea-
ture by shape compari-
son. A structure database
search with DNA poly-
merase B detects kana-
mycin  nucleotidyltrans-
ferase (rather than other
known DNA or RNA poly-
merases) as the nearest
neighbor in fold space and
reveals conserved resi-
dues and structural fea-
tures supporting the active
site. Following up the lead
provided by structure da-
tabase searching with pro-
file searches in sequence
databases resulted in the

identification of the same characteristics in a large superfamily of nucleotidyltransferases. The biological
functions of member families range from DNA repair to regulation of biosynthetic pathways and antibiotic
resistance (27). (B) Variety of substrate specificity of a common chemical reaction on an essential protein
substructure is the remarkable result of biological evolution. All member enzymes of this extended family
unified as a result of shape comparison catalyze a common chemical reaction, the coupling of nucleoside
triphosphates (black squares and dots) to a free hydroxyl group by means of elimination of pyrophosphate
[top row: DNA polymerase B, DNA nucleotidyl exotransferase; middle row: polyadenylate polymerase,
(2'-5") oligoadenylate synthetase, kanamycin nucleotidyltransferase; bottom row: protein P, uridylyltrans-
ferase, glutamine synthetase adenylyltransferase, and streptomycin 3’-adenylyltransferase].
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ologists will move beyond the mere descrip-
tion of evolutionary relations to a quantita-
tive and predictive model of the evolution
of proteins. The increasingly complete
knowledge of protein structure will be used
as a basis for detailed modeling of protein
function, protein-protein interactions, and
metabolic or signaling pathways. Mapping
the protein universe by surveying and clas-
sifying protein shapes (29) is a key contri-
bution to these endeavors.
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