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Persistent Site-Specific Remodeling of a 
Nucleosome Array by Transient Action of the 

SWI/SNF Complex 
T. Owen-Hughes, R. T. Utley, J. Cbte, C. L. Peterson, 

J. L. Workman* 

The SWIISNF complex participates in the restructuring of chromatin for transcription. The 
function of the yeast SWI/SNF complex in the remodeling of a nucleosome array has now 
been analyzed in vitro. Binding of the purified SWI/SNF complex to a nucleosome array 
disrupted multiple nucleosomes in an adenosine triphosphate-dependent reaction. 
However, removal of SWI/SNF left a deoxyribonuclease I-hypersensitive site specifically 
at a nucleosome that was bound by derivatives of the transcription factor Gal4p. Analysis 
of individual nucleosomes revealed that the SWI/SNF complex catalyzed eviction of 
histones from the Gal4-bound nucleosomes. Thus, the transient action of the SWI/SNF 
complex facilitated irreversible disruption of transcription factor-bound nucleosomes. 

T h e  re~nodelln, a of chromat~n structures to 
generate deoxyrihonuclease (DNase)-hy- 
persensitive sites at regulatory elements pre- 
cedes or occurs concurrently with the in- 
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duction of t ra~~scr ip t lo t~  at many genes ( I  ). 
Genetic and hioche~n~cal  st~rdies implicate 
an adenos l~~e  triphosphate. (ATP)-depen- 
dent mm~ltlsuhunit protein complex, the 
SWI/SNF complex, 111 this process (2) .  The 
2000-kD SWIISNF complex hinds to DNA 
and n~~cleosomes, perturbs h~stone-DNA 
interactions, and enhances the afflnity of 
transcription factors for nucleosornal DNA 
(3-7). To  lnvestlgate the mechanis~n by 
~vhich SWIISNF might re~nodel chromatin 
at tra~lscriptional regulatory elements, we 
analyzed the action of the Silcchilromyces 
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cerevisiae SWI/SNF complex on an array of 
nucleosomes. 

For these studies, it was necessary to 
avoid contamination from chromatin as- 
sembly factors or other nucleosome-remod- 
eling activities [for example, nucleosome 
remodeling factor (NURF)] that can re- 
main associated with templates reconstitut- 
ed into nucleosomes in crude systems (8- 
10). Thus, we reconstituted nucleosome ar- 
rays in a purified system composed of only 
histones and DNA. Nucleosome cores were 
reconstituted on a 2.3-kb DNA fragment 
that contains a central nucleosome-length 
sequence with five Gal4 binding sites 
flanked on either side by five repeats of a 
nucleosome-positioning sequence from 5S 
ribosomal RNA genes (1 1 ). The 5S se- 
quences sequester a nucleosome core on 
each repeat and also allow one to form over 
the Gal4 sites, which results in an array of 
1 1 nucleosome cores ( 1 2, 13). Nucleosome 
core reconstitution onto the construct re- 
sults in a pattern of nuclease protection and 
sensitivity indicative of a repeating array of 
positioned nucleosomes (Fig. 1 B) ( 1 2, 14). 

The action of a Gal4p derivative, Ga14- 
AH, and the SWI/SNF complex on the 
nucleosome array was analyzed by DNase I 
digestion (Fig. 1 B) ( 15, 1 6). Five Gal4-AH 
dimers bound to the central nucleosome 
within the array, as was observed previously 
with mononucleosomes ( 17, 18). The addi- 
tion of Gal4-AH resulted in a low-resolu- 
tion footprint and DNase hypersensitivity 
flanking the five Gal4 sites in the center of 
the nucleosome array. When the purified 
yeast SWI/SNF complex was also included, 
the boundaries between adjacent nucleo- 
somes became less defined, indicating that 
SWI/SNF affected the structure of all nu- 
cleosomes within the array in an ATP- 
dependent manner. The hypersensitivity 
flanking the Gal4 sites persisted in the pres- 
ence of SWI/SNF, suggesting that this nu- 
cleosome remained bound by Gal4-AH. 

Because there is insufficient SWI/SNF 
in yeast cells for it to remain stably associ- 
ated with each potentially active promoter 
(3, 4; but see 19, 20), SWI/SNF is likely to 
act transiently at promoters in vivo. To 
examine whether SWI/SNF induced persis- 
tent structural alterations in the nucleo- 
some array, we diluted the complex to sub- 
stoichiometric concentrations with a 20- 
fold excess of unlabeled oligonucleosomes 
after the binding reactions (Fig. 1A). This 
dilution removed the SWI/SNF complex 
from the disrupted nucleosome array (2 1 ). 
To examine the nucleosome occupying the 
Gal4 sites, the bound Gal4-AH was also 
removed by competition with a double- 
stranded Gal4-site oligonucleotide. These 
competition reactions had no effect on the 
nucleosome array that was not exposed to 

SWI/SNF or Gal4-AH (Fig. 1C). More- 
over, competition with the array bound by 
Gal4-AH in the absence of SWI/SNF re- 
sulted in a loss of the Gal4-AH footprint 
and adjacent DNase I sensitivity, with the 
return to a configuration that resembled 
that of the array that had not been bound 
by Gal4-AH. This result suggests that, as 
when Gal4-AH binds to single nucleosomes 
(9, 22), the central nucleosome remained 
intact during Gal4-AH binding. When the 
SWI/SNF complex was removed from the 
array, the nuclease digestion pattern of the 
repeating positioned nucleosomes on the 5S 
sequences reappeared (Fig. 1C). In contrast, 
the nucleosome bound by Gal4-AH was 
affected differently. When the SWI/SNF 
complex and Gal4-AH were both removed, 
a site of DNase hypersensitivity remained at 
this location. Formation of this hypersensi- 
tive site within the array was dependent on 
Gal4-AH binding, the presence of SWI/ 
SNF, and ATP. Thus, the combined action 

of Gal4-AH binding and the SWI/SNF 
complex resulted in an ATP-dependent 
permanent alteration to the nucleosome ar- 
ray, detected as a sequence-specific DNase- 
hypersensitive site. 

The SWI/SNF-induced permanent 
DNase hypersensitivity at the Gal4 binding 
sites must represent either a structurally 
altered nucleosome core that is nuclease- 
sensitive or a region of naked DNA that 
results from loss of histones. Because nucle- 
ase digestion analysis of chromatin structure 
cannot distinguish between these possibili- 
ties, we performed more definitive experi- 
ments with mononucleosome substrates to. 
address this issue. 

The ability of the SWI/SNF complex to 
interact with both the Gal4 site and 5S 
nucleosomes was confirmed by the data 
shown in Fig. 2. Addition of the SWI/SNF 
complex perturbed the DNase digestion 
pattern of both the 5S mononucleosome 
(Fig. 2A) and the Gal4-site mononucleo- 

Nucleosome Assay chromatin Remove SWIISNF Assay persistent 
array + Gal4-AH, + structure in the -- and Gal4-AH by--, changes to chromatin 
+ SWIISNF, presence of SWllSNF competition structure 
+ ATP and Gal4-AH I 

B C 
+ + + + ATP + + + + ATP 

+ + + SWIISNF + + + SWIISNF 
+ + + - Gal4-AH + + + - Gal4-AH 

d b d A + DNase l A A 4 A + DNase l 

-- 
I < - P ' I .  1 1  

Fig. 1. Transient and persistent changes in chromatin structure mediated by the SWI/SNF complex. (A) 
The order of Gal4-AH and SWI/SNF binding to the nucleosorne array, subsequent competition reac- 
tions, and the points of DNase I digestion analysis (vertical arrows). The end-labeled Mlu I-Pvu I I  
fragment from plasmid pG5208-10 (1 1) was reconstituted into a nucleosome array (13) before incuba- 
tion in the presence or absence of 50 nM Gal4-AH, 5 nM SWI/SNF, and 1 mM ATP (Mg2+ salt) as 
indicated (15). (B) Binding reactions were performed for 30 min at 30°C and then directly analyzed by 
DNase I digestion (16). (C) Binding was performed under conditions identical to those in (B) and was 
followed by competition of Gal4-AH and SWI/SNF with Gal4 oligonucleotide and nucleosomes (15) 
before DNase I digestion. Each set of conditions is represented by three lanes of increasing amounts of 
DNase I digestion (ramps) with the exception of lane 13 (B and C), which presents a single digestion 
condition. The positions of the 5 s  nucleosomes (black ovals) and the Gal4-site nucleosome (white oval) 
within the array are indicated. A DNase I-hypersensitive site that formed at the location of the Gal4-site 
nucleosome when the array was treated with SWI/SNF and ATP in the presence of Gal4-AH (B, lane 8) 
persisted after competition (C, lane 7), whereas the 5 s  nucleosome positioning was recovered after 
competition both above (C, lane 7) and below (C, lane 8) the hypersensitive site. 
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some (Fig. 2B). This disruption enhanced 
the affinity of Ga14-VP16 for the Gal4-site 
nucleosome. Both footprinting (Fig. 2B) 
and gel mobility-shift analysis (Fig. 2C) 
revealed that the binding of five Ga14- 
VP16 dimers to nucleosomal DNA in the 
presence of SWI/SNF was achieved at sim- 
ilar concentrations to those required for 
Ga14-VP16 binding to the corresponding 
naked DNA fragment. Thus, in the pres- 
ence of the SWI/SNF complex, histone- 
mediated inhibition of Ga14-VP16 binding 
is not apparent. This result, together with 
the DNase-sensitive site formed in the re- 
gion occupied by the central nucleosome, 
raises the possibility that the histones were 
evicted from the Gal4-site sequences as a 
consequence of Gal4-derivative binding 
and SWI/SNF action. We investigated this 

Fig. 2. Perturbation of A N,,clea- B 
both 5S and Gal4-site 
mononucleos~me~ and 
stabilization by SWI/SNF 
of Gal4 derivat'wes binding 
to their recognition sites. 
(A) A single copy of the 5s 
nucleosome-positioning 
sequence (31) was recon- 
stituted into rnononucleo- 

possibility with an oligonucleotide-compe- 
tition gel mobility-shift assay that is capable 
of determining the fate of the core histones 
after transcription factor binding (23). 

To  examine the effects of SWI/SNF ac- 
tion and Gal4-AH binding on the underly- 
ing nucleosome core, we removed Gal4-AH 
by oligonucleotide competition after its 
binding in the presence of SWI/SNF (Fig. 
3). In the absence of SWI/SNF, removal of 
bound Gal4-AH resulted in the reappear- 
ance of the original nucleosome core. Thus, 
Gal4-AH binding alone did not efficiently 
displace the underlying histone octamer. In 
contrast, when the SWI/SNF complex was 
present during Gal4-AH binding, removal 
of bound Gal4-AH and SWI/SNF released 
the fragment as naked DNA. Thus, disrup- 
tion of this nucleosome by the SWI/SNF 

some cores, incubated in B--==--g 
the presence or absence e---ii= 
of 105 nM Ga14-VP16 and E- e 
5 nM SWI/SNF as indicat- -+=- ,,==.-- 
ed, and analyzed by - =5 
DNase I digestion. SWl/ 
SNF perturbed the DNase 3 
digestion pattern of the 55 =' A '- _ - 
nucleosome independent jSi 
of the presence of Ga14- =,;- 
VP16 (lanes 5 and 6). '1 

DNase I digestions of the - - 
mononucleosomes were ' 
performed as previousiy 
described (4). Lane 1, a G + A cleavage ladder of 
the 5S DNA probe; lane 2, the DNase digestion 
pattern of the same probe as naked DNA. (B) A 
nucleosome-length DNA fragment containing 
five Gal4 binding sites (32) was either reconstitut- 
ed into nucleosome cores or analyzed as naked 
DNA. Binding reactions included 5 nM SWI/SNF 
where indicated and increasing concentrations 
of Ga14-VP16. In the absence of SWI/SNF, Ga14- 

SWIISN~ Nucleosome Nucleosome + DNA 

Ga14-VP16 SWllSNF 
4 d ~ a 1 4 -  

I GaU 
sites 

C 
Nucleosome Nucleosome DNA 

+ SWllSNF 
A 4 A Gal4-AH 

5 GaY- 
AH-bound 

VP16 affinity for the Gal4 sites was reduced by 
10-fold (lanes 1 to 7) relative to naked DNA (lanes 

Nucleo- 
some 

15 to 20). However, in the presence of SWI/SNF, 
Ga14-VP16 binding to the mononucleosome 
(lanes 8 to 14) occurred wdh equal affinity to that &' Free DNA 
observed with naked DNA (lanes 15 to 20). Ga14- ' " ' ' " l o  l 1  l 2  l 3  l 4  l 5  l 7  l 8  

VP16 concentrations were 0 in lanes 1, 8, and 
15: 0.7 nM in lanes 2.9, and 16; 2.1 nM in lanes 3, 10, and 17; 7 nM in lanes 4, 11, and 18; 21 nM in lanes 
5.12, and 19; 70 nM in lanes 6.13. and 20; and 21 0 nM in lanes 7 and 14. DNase I digestions were performed 
as in (A). (C) Gel mobility-shift analysis of the effect of SWI/SNF on Gal4-AH binding to the five Gal4-site 
mononucleosome cores. Increasing amounts of Gal4-AH were incubated with the probe containing five Gal4 
binding sites as naked DNA or as nucleosome cores in the presence or absence of 5 nM SWI/SNF (33). In the 
presence of SWI/SNF, the binding of b e  Gal4-AH dirners to the mononucleosomes occurred with an affinity 
similar to that for naked DNA (lanes 7 to 12 and 13 to 18). Gal4-AH concentrations were 0 in lanes 1,7, and 
13; 1.5 nM in lanes 2.8, and 14; 5 nM in lanes 3.9, and 15; 15 nM in lanes 4, 10, and 16; 45 nM in lanes 5, 
11, and 17; and 135 nM in lanes 6,12, and 18. 

complex resulted in eviction of the histones 
from the Gal4-AH-bound nucleosome. 
Eviction of the histones by SWI/SNF was 
dependent on the binding of Gal4-AH and 
a hydrolyzable form of ATP (Fig. 3). 

The data in Fig. 3 provide a molecular 
explanation for the appearance of the per- 
sistent hypersensitive site in the nucleo- 
some array in response to the combined 
action of SWI/SNF and Gal4-AH binding 
(Fig. 1). Whereas the SWI/SNF complex 
interacts with multiple nucleosomes in the 
array, only the nucleosome bound by Ga14- 
AH underwent histone eviction. Thus, the 
nucleosome destabilization attributable to 
the binding of Gal4-AH (9, 22-24) predis- 
posed this nucleosome to histone loss in 
response to further disruption by the SWI/ 
SNF complex (25). However, at different 
regulatory elements, the action of SWI/SNF 
and bound factors might result in persistent 
nucleosome disruption without the actual 
loss of histones (26). 

These results suggest that ATP-depen- 
dent chromatin-remodeling machines like 
the SWI/SNF complex function in con- 
junction with nucleosome-bound transcrip- 
tion factors to generate regions of nucleo- 
some disruption in chromosomal DNA. 

+ + +  + + +  y y A T P  
- - - + + + + + SWIISNF 

Bind nucleosome 0 15 50 0 15 50 1550 Gal4-AH 
-- 

f SWllSNF (nm) 
f Gal4-AH 

f A T p  + 
Remove SWIISNF 
and Gal4-AH by b UU f,":: 
competition + 
Assay for presence 
of nucleosome by 
gel shin 4 DNA 

t 2 3 . L  5 5 7 8  

Fig. 3. SWI/SNF facilitation of histone eviction 
from transcription factor-bound nucleosomes. 
Binding reactions were performed with five Ga14- 
site nucleosomes (34) in the presence or absence 
of Gal4-AH at the concentrations indicated, 5 nM 
SWI/SNF, and either 1 mM ATP (+) or the nonhy- 
drolyzable ATP analog adenosine 5'-0-(3-thio- 
triphosphate) (y) as Mg2+ salts, as indicated. After 
the binding reactions, Gal4-AH and SWI/SNF 
were removed by competition with a Gal4 oligo- 
nucleotide and HeLa nucleosomes, enabling the 
fate of the Gal4-AH-bound nucleosome to be de- 
termined by gel mobility-shift assay. In this assay, 
if the histones were retained on DNA during the 
binding reaction, the mononucleosome core (nu- 
cleosome) reappears after Gal4-AH and SWI/SNF 
competition. If the histones were dissociated from 
nucleosomal DNA during the binding reaction, the 
DNA fragment is released as naked DNA after 
Gal4-AH and SWI/SNF competition. Histones 
were evicted from the Gal4-site DNA only in the 
presence of Gal4-AH, SWI/SNF, and a hydrolyz- 
able form of ATP (lanes 5 and 6). 
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The persistence of the hypersensitive site 
after removal of the SWI/SNF complex may 
explain how this complex of relatively low 
abundance functions at a diverse range of 
loci in vivo. The creation of transcription
ally active chromatin conformations may 
require only the transient presence of SWI/ 
SNF. The ability of transcription factors to 
predispose specific nucleosomes to persis
tent disruption by the SWI/SNF complex, 
coupled with the possible targeting of the 
SWI/SNF complex to particular regions of 
chromatin by interactions with transcrip
tion activators or RNA polymerase II ho-
loenzyme (6, 19, 27), indicates how the 
SWI/SNF complex might generate specific 
changes in chromatin structure that are im
portant in inducible or developmental 
pathways of gene regulation. 

Additional ATP-dependent activities 
capable of chromatin remodeling have been 
identified in Drosophila embryo extracts 
(10, 28-30). Although these activities in
clude NURF, a distinct protein complex, 
the existing data are consistent with the 
possibility that these activities function by a 
mechanism similar to that described here 
for SWI/SNF. For example, the NURF 
complex also interacts with nucleosomes 
independent of transcription factors, but 
still contributes to the formation of factor-
dependent DNase I-hypersensitive sites 
(10, 28). 
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