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The POU Factor Oct-6 and Schwann 
Cell Differen tiation 

Martine Jaegle, Wim Mandemakers, Ludo Broos, Ronald Zwart, 
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The POU transcription factor Oct-6, also known as SCIP or Tst-I, has been implicated 
as a major transcriptional regulator in Schwann cell differentiation. Microscopic and 
immunochemical analysis of sciatic nerves of Oct-6-'- mice at different stages of 
postnatal development reveals a delay in Schwann cell differentiation, with a transient 
arrest at the promyelination stage. Thus, Oct-6 appears to be required for the transition 
of promyelin cells to myelinating cells. Once these cells progress past this point, Oct-6 
is no longer required, and myelination occurs normally. 

Schwann  cells are i ~ ~ v o l v e d  in the trophic 
support and insulation of axons and are the 
only glial cell type in peripheral nerve 
trunks. T h e  two types of Schwann cells, 
myelinating Schwann cells associated ivit11 
axons greater than 1 1J.m in diameter and 
nonmyelinating cells associated with multi- 
ple lower caliber axons, both differentiate 
from neural crest-derived Sch\vann cell 
precursors. Myelination initiation correlates 
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with axon diameter and is governed by 
axonal signals that are as yet not under- 
stood ( 1  ). 

A number of transcription factors have 
been proposed to be involved in Schwann 
cell differentiation and myelination (2 ) .  
Prominent among those is the POU domain 
transcription factor Oct-6 (also kno\vn as 
SCIP or Tst-1) (3). T h e  Oct-6 protein is 
expressed in the Sch\vann cells of the sci- 
atic nerve and the sympathetic trunk from 
embryonic day 16 ( E l  6 )  onward (4). During 
postnatal ~ l e r \ ~ e  development, the expres- 
sion of Oct-6 inRNA is gradually do\vn- 
regulated and exti~lguished, with only spo- 
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radic expression in Schwann cells of the 
. adult nerve (5). In vitro and transgenic 
mouse experiments have suggested that 
Oct-6 acts as a negative transcriptional reg- 
ulator and as a general repressor of myelin 
genes in proliferating Schwann cells (6). By 
inference, Oct-6 was postulated to be in- 
volved in embryonic Schwann cell prolifer- 
ation and to regulate the correct number of 
Schwann cells in the peripheral nerves. In 
the absence of Oct-6 gene function, one 

Fig. 1. Targeted disruption of the 
Oct-6 gene. (A) Targeting strategy. 
Schematic representation of the 
mouse Oct-6 gene (middle). The 
thick black line represents the tran- 
scribed part of the Oct-6 locus, 
which is encoded by a single exon. 
The open box represents the open 

Targeting 
vector 

Wild-type 
allele 

prediction of this model is that Schwann 
cells w i l l  differentiate prematurely and their 
numbers wi l l  be reduced. 

T o  elucidate the role of the Oct-6 gene in 
Schwann cell differentiation, we interrupted 
the DNA binding domain of the mouse 
Oct-6 locus through homologous recombina- 
t ion in embryonic stem (ES) cells, wi th a 
P-galactosidase-neomycin fusion gene (7) 
(Fig. 1). Two different Oct-6+/- ES cell 
lines produced chimeric animals and had 

Probe 1 reading frame, and the hatched box Mutant 1 - A st PJI 

represents the POU domain. A allele - - 
DNA fragment containing a p-ga- Probe 1 Pmbe 2 

lactosidase-neomycin fusion gene preceded by an intemal ribosome entry site (IRES) (7) (gray and 
striped boxes) was inserted into the Xho I site of the Oct-6 gene, thereby disrupting the DNA binding 
domain of the Oct-6 protein (top). A schematic representation is also shown of the mutant allele, 
indicating the position of the probes that were used to identify homologous recombinant ES cell lines 
(bottom). (B) Southem blot of Eco Rl-restricted DNA, showing a 4.6-kh mutant allele band and a 6.8-kb 
wild-type allele band detected by probe 2. The mutant allele expresses a 6.9-kb bicistronic mRNA under 
control of the endogenous Oct-6 promoter and its regulatory sequences. No full-length Oct-6 protein 
can be produced from this mRNA. 

Fig. 2. lmmunohistochemical analysis of wild- 
type versus Oct-6-I- mutant sciatic nerves. Sci- 
atic nerves of 18 days postcoitum embryos (A and 
B) and P8 (C and D) and P1 4 pups (E and F) were 
analyzed for the expression of the Oct-6 protein 
(green fluorescent signal) and the myelin protein 
Po (red fluorescent signal) (9). Wild-type and Oct- 
6-/- nerves express basal levels of the Po protein 
at El  8 (A and B). A few cells express already high 
levels of Po (A, white arrows). At P8 and at P14, 
high levels of Po expression are seen in wild-type 
nerve (C and E), whereas in mutant nerve, only a 
small number of Schwann cells express high lev- 
els of the Po protein (D and F, white arrows). Im- 
munohistochemical analysis of paraffin sections 

e 
was as described (8). The bar represents 50 pm. I 

Fig. 8 Expression of early and late A P1l ~ 1 4  4- -1- 
myelin markers in the sciatic nerves I--- B-- 

4 4- 4 4- 4- C 4- 4- M,(kD) 
of Oct-6-/- and Oct-6+'- animals. MAG-- 
(A) Protein immunoblot analysis of N F - M - . l e a  Hm-- 
protein extracts from mutant and 
heterozygote sciatic nerves at P I ,  
P8, P1 1, and P14. The blots were PO-- 
probed with antibodies to Po. CNP, 

-= HPRT- 

MBP. am NF-M m e  m n t  of M B P : : ~  MBP-- 
protein is normalized for the NF-M 
signal. The relative molecular mass is indicated by Mr. (8) Semiquanfita- HPRT- 
tive PCR analysis of expression levels of MAG, PMP-22, and MBP in PI  4 
Oct-6+'- and Oct-6-I- sciatic nerves. For each gene, amplification of 
hypoxanthine phosphoribosyl-transferase (HPRT) cONAwas used as an internal control in ev 

4 and 8). 
panel. Samples were taken at cycles 20 (lane 1 and 5), 22 (lane 2 and 6), 24 (lane 3 and 7), and 26 (lane 

high frequencies of germline transmission. 
Identical results were obtained from both 
lines. Heterozygote animals were healthy 
and had no readily apparent abnormalities. 
Analysis of p-galactosidase activity in these 
animals confirmed the previously described 
Oct-6 expression pattern (3, 4, 8). 

Mice homozygous for the mutated Oct-6 
allele were produced at normal Mendelian 
ratios and developed to term and showed n o  
gross anatomical abnormalities. Most Oct- 
6-I- pups died soon after birth, but 2 to 4% 
survived for a longer period. From postnatal 
day 5 (P5) onward, mutant animals could be 
identified by their smaller size and occasion- 
al tremors in the second postnatal week. 

T o  determine whether Schwann cells 
were affected in the Oct-6-I- mice, immu- 
nohistochemical analysis was performed (8). 
Normally, myelinating Schwann cells coor- 
dinately express myelin genes such as those 
encoding protein zero (Po), peripheral mye- 
lin protein (PMP-22), myelin basic protein 
(MBP), and myelin-associated glycoprotein 

Fig. 4. Microscopic cross sections of sciatic 
nerves of Oct-6+/- and Oct-6-I- animals at dif- 
ferent stages of postnatal development. The left 
panels were derived from Oct-6+/- animals, and 
the right panels were derived from Oct-6-I- ani- 
mals. Semithin sections (1 pm) of Epon-embed- 
ded material were stained with methylene blue. 
The age of the animal is indicated on the right. The 
bar in each panel represents 25 pm. 
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(MAG). Examination of El8 nerves showed 
.that Po expression levels were normal, and 
no abnormalities in either the number of 
Schwann cells or the shape of their nuclei 
were apparent (Fig. 2, A and B, and Fig. 4, A 
and B). However, P8 and P14 sciatic nerves 
of -/- animals appeared to be defective in 
myelination. The nerves revealed reduced 
levels of Po expression relative to the highly 
Po-positive nerves of +/+ littermates (Fig. 
2). Some Oct-6-I- Schwann cells express 
normal, high levels of Po (Fig. 2D), but most 
express little Po. At P14, the number of 
Schwann cells that express high levels of Po 
had increased (Fig. 2F). 

Protein immunoblotting and semiquan- 
titative reverse transcriptase-polymerase 
chain reaction (RT-PCR) were used to ex- 
amine the expression levels of a number of 
early and late myelin markers in the sciatic 
nerve at different stages of postnatal devel- 
opment (9). Less than normal Po and MBP 
levels were found in the mutant nerve (Fig. 
3A). Early expression of 2',3'-cyclic nucle- 
otide 3'-phosphodiesterase (CNP) protein 
at P1 was not affected (Fig. 3A), but the 
postnatal increase was less. We also exam- 
ined the mRNA levels of the genes encod- 
ing myelination markers PMP-22, MAG, 
and MBP (Fig. 3B) and found them to be 

Fig. 5. Ultrastructure of sciatic 
nerves at different stages of postna- 
tal development. Shown is the ultra- 
structural appearance of an Oct- 
6+/- (A) and Oct-6-/- (B) nerve at 
P.1. Ensheathing and promyelin cells 
are visible in both nerves. The darker 
cell in the upper right part of (A) has 
made the first wrap around its axon. 
(C) Oct-6+/- nerve at PI 6. (D and E) 
Representative sections of an Oct- 
6-/- nerve at P16. Panel (D) illus- 
trates the normal but immature ap- 
pearance of an Oct-6-/- nerve at 
P16, and (E) illustrates the sporadic 
abnormalities observed in mutant 
nerves. The open arrow indicates 
myelination in the absence of an 
axon. The asterisks indicate large 
axons associated with a myelinating 
Schwann cell. (F) Mutant Schwann 
cell that has produced a normal my- 
elin sheath. The solid arrows indi- 
cate an uncompacted periaxonal 
membrane. The white arrow points 
at an apparently normal basement 
membrane. Also shown are repre- 
sentative sections of adult heterozy- 
gous (0) and mutant (H) nerves. 

reduced. These expression data suggest that 
in Oct-6-1- animals, nerve myelination is 
delayed but not completely blocked. Alter- 
natively, it is possible that a number of 
Schwann cells differentiate normally, where- 
as the rest are blocked at an early stage of 
differentiation. 

To  distinguish between these possibili- 
ties. we examined the microsco~ic structure 
of sciatic nerves at different stages of postna- 
tal development (1 0). Normally, only a few 
myelinating Schwann cells were observed at 
birth, with extensive myelination visible at 
P4 and P8 (Fig. 4, A, C, and E). At P16, 
myelination was well advanced, with many 
fully myelinated axons (Fig. 4, G and I). 
However, in the Oct-6-I- nerve, no evi- 
dence of myelination was seen until the sec- 
ond week of postnatal development (Fig. 4, 
B, D, F, and H). In adult Oct-6-I- nerves, 
myelination appeared complete (Fig. 4J). 

Electron microscopic analysis of 80-nm 
sections of sciatic nerves from -1- and 
+/- mice revealed no differences at PI. 
Schwann cells were activelv ensheathine " 
axons, and promyelin figures were observed 
in which Schwann cells had acauired a 1 : 1 
relation with an axon. There was a normal 
deposition of collagen fibrilles, and Oct- 
6-1- and Oct-6+/- Schwann cells produced 

a basement membrane (Fig. 5, A, B, and F). 
In wild-type P16 nerves, most large-caliber 
axons were myelinated, whereas Oct-6-1- 
P16 nerves showed an immature phenotype 
with promyelin figures with only the larger 
axons myelinated. Schwann cells that had 
myelinated a single, large caliber axon ap- 
peared normal, with an uncompacted peri- 
axonal membrane and tightly packed mye- 
lin membranes (Fig. 5F). Very sporadically, 
abnormal myelin figures were observed that 
showed several large axons associated with 
a myelinating Schwann cell (Fig. 5E). 
These Schwann cells showed severelv dis- 
rupted myelination, as evidenced by their 
failure to wrap myelin around the axon, ' 
resulting in disorganized myelin sheaths. 
Such Schwann cells started myelination be- 
fore a 1 : 1 relation with an axon was estab- 
lished. Sometimes myelination was ob- 
served in the absence of an axon (Fig. 5E). 
In adult Oct-6-/- animals, nerve myelina- 
tion was complete (Fig. 5, G and H). 

These data demonstrate that in Oct- 
6-I- mice there is a delav in the onset of 
myelination and not a block in the differ- 
entiation of Schwann cells. This delay is 
characterized by a transient arrest of 
Schwann cells at the promyelin stage. Once 
cells progress past this stage, myelination 
occurs normally, which indicates that Oct-6 
is not involved in the execution of the 
terminal differentiation program. These re- 
sults are in contrast with transgenic studies - 
in which a dominant negative form of 
Oct-6 under transcriptional control of the 
Po promoter results in an early onset of 
myelination and hypermyelination. This 
discrepancy may suggest separate functions 
for Oct-6 protein in early and late Schwann 
cell development, as discussed by Weinstein 
et al. (6, 11 ). Our results suggest that Oct-6 
exerts its function in Schwann cell devel- 
opment through the regulation of genes 
that are involved in embrvonic Schwann 
cell axon interactions that govern the tran- 
sition from a promyelin cell to a myelinat- 
ing Schwann cell. Exactly which genes are 
regulated by Oct-6 and how this process 
mediates the progression of Schwann cell 
differentiation require further study. 
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gels were electroblotted on f ters and further pro- 
cessed according to standard procedures. PC 
monoclonal antibody PO7 was provlded by J. J. 
Archelos [J. J. Archeos et a/. ,  J. Neurosci. Res. 35 ,  
46 (1993)l. Other monoclonal antibodies were ob- 
talned from Boehringer Mannheim (MBP), Slgma 
(CNP), and Amersham (NF160). For RT-PCR, RNA 
was extracted with the LiCurea method and re- 
verse-transcrbed Into cDNA v'lith oigo(dT) and hex- 
amer primers. Excess primers v'lere removed on a 
Centrcon C-30 (Amicon) concentrator. For MBP am- 
plification, v/e used cDNA generated from P8 sciatic 
nerve RNA. After 20-fold diuton, polymerase chain 
reacton (PCR) ampf~cation was performed by use of 
the Expand long template PCR system (Boehringer 
Mannheim). Each amplification cycle comprsed 30 s 
at 94"C, 1 min at 55"C, and 1 min at 68°C. After the 
10th ampifcation cycle, the extenson time was In- 
creased with 20-s Increments. Samples were taken at 
cycles 20, 22, 24, and 26. The f~ l lov~~ing primers were 
used: MAG: 5'-urimer GCCACGGTCATCTATGA- 
GAGTCAGC and 3'-nrlmer GGTGCCCAGAGAT- ~~~~~ ~~ ~~~~ ~ ~ 

TCTGAATTCGG: HPRT: 5'-primer CACAGGACTA- 
GMCACCTGC and 3'-pr~mer G C T G G T G M G -  
GACCTCT; PMP-22 : 5'-primer ACACTGCTACTC- 
CTCATCAGTGAG and 3'-primer CAGGATCACAT- 

Spinal Cord Repair in Adult Paraplegic Rats: 
Partial Restoration of Hind Limb Function 

Henrich Cheng," Yihai Cao, Lars Olson 

Complete spinal cord gaps in adult rats were bridged with multiple intercostal nerve 
grafts that redirected specific pathways from white to gray matter. The grafted area was 
stabilized with fibrin glue containing acidic fibroblast growth factor and by compressive 
wiring of posterior spinal processes. Hind limb function improved progressively during 
the first 6 months, as assessed by two scoring systems. The corticospinal tract regen- 
erated through the grafted area to the lumbar enlargement, as did several bulbospinal 
pathways. These data suggest a possible repair strategy for spinal cord injury. 

T r e a t m e n t  that promotes functional re- 
generation across a complete spinal cord 
transection in 11ulna11s does not  exist. I11 

animal experi~nents ( I ) ,  recovery after in- 
complete spinal cord lesiol~s has been 
achieved in mature animals treated with 
myelin-associated protein antibodies, 
whereas recovery after complete lesions has 
been shown in neonates ( 2 ) .  T o  avoid am- 
biguity and to model the nlost severe clin- 
ical scenario, we s t ~ ~ d i e d  adult rats with 
complete surgical trallsection of the spinal 
cord, including rerno7,al of 5 lnln of the cord 

H. Chenq, Depaqmenr of Neuroscience, Karoinska Inst1 

at vertebra T8 .  Histology of excised pieces 
of spinal cord demonstrated complete 
transection (Fig. 1 A )  W e  then proceeded 
wit11 a repair strategy (3) .  

W e  used peripheral nerve irnplants (4)  
to bridge the  gap in the spinal cord (Fig. 1,  
B and C, and Fig. 2B) and found that the  
use of multiple fine nerve implants (18 
nerves to bridge one gap) gave better pre- 
cision than the use of fewer thicker nerves. 
T o  evade oligodel~droglial proteins that in- 
hibit axon regeneration (5), we rerouted 
regenerating pathways from nonpermissive 
white to permissive gray lnatter (6) .  T h e  
o e r i ~ ~ l ~ e r a l  nerve bridges thus redirected de- 

AGATGATACCACTG; and MBP: 5'-primer ACTCA- 
CACACGAGAACTACCCA and 3'-primer CCAGCT- 
AAATCTGCTGAGGG. The ampfied fragments yied- 
ed bands of 605 bp for MAG, 316 bp for PMP-22, 
249 bp for HPRT, and 170 bp for MBP. Alnpification 
products were separated on a 4"0 denaturing poy- 
acvjamide gel, and signals were measured with a 
Molecular Dynamics phosphoimager. 

10. Animals v'lere perfused v'11th phosphate-buffered sa- 
line, pH 7.2, for 3 m n  followed by f~xati\~e (3"0 para- 
formaldehyde and 1"" gutaradehyde buffered by 
100 mM cacod)/late at pH 7.2) for 10 min. Nerves 
v'lere dissected cut into smaller pieces, and flxed 
overngtit in the same fixatihle. After postfxation in 
l o o  osmium tetroxde, the sample v/as embedded in 
Epon. Ultra-thin sectons v'lere stained with uranyl 
acetate and lead citrate. Sections were examned 
and photographed with a Philips CMl00  electron 
m croscope. 

11. R. Mirsky and K. R. Jessen, C u r  Opin. Neiirob!ol. 6 ,  
89 11 996). 
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glue that does not impair nerve fiber growth 
(8) and fixed the vertebral colulnn in dor- 
siflexion by wiring (9) .  

Acidic fibroblast growth factor (aFGF) is 
a normal spinal cord c o n s t i t ~ ~ e n t  (10) .  Be- . , 

cause it lacks a signal sequence, aFGF is 
thought to be sequestered within cells and 
released only after damage. Consequently, 
FGF may be inr,olved in repair (1 1 ) .  It also 
decreases nliosis and ellhances nerve fiber " 
development in spinal cord grafts (12).  
Mixing aFGF into fibrin glue allows slow 
release of the factor (13) .  

Animals were followed over time for 
signs of f~lnctional recovery and rated by 
two independent, blinded observers using 
the  colnbined behavioral score (CBS) (14)  
and the  open-field walking score (OFWS)  

u 

(15) .  Key responses were videotaped. Hind 
limb f ~ ~ n c t i o n  in animals subjected to the  
repair procedure improved significantly, be- 
ginning 3 weeks after operation and con- 
tinuing through the  1 year of observation 
(Fig. I D ) .  Anirnals subjected to unilateral 
treatment also improved, although to a less- 
er degree. Animals in four different control 
groups [transection only (n  = 14) ,  cord 
removal only (11 = j), white matter-to- 
white rnatter bridging (71 y 3),  and omis- 
sion of aFGF (11 = 2)] did not improve (Fig. 
I D ) .  Improvement was manifest as appear- 
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tute, s-el 77 Stockhoms Sweden, and Depaqment of scending motor patKways from proxi~nal ante of a f~lnctional posture in hind limbs 
Ne~~rosurger;/ Neurolog~c Institute Veterans General 
HospltalTa and Dlv.slon of Surgel.j, National Yang  white to distal gray lnatter and ascending (usually flexion at hips and then knees and 
M n g  Unvers~ty, Tawan. pathways from distal white to proximal gray then dorsiflexion a t  ankles). In controls, 
Y, Cao, Department of C e  and Molecular B i o o g ~ ,  Karo- rnatter (Fig. l E ) ,  according to the specific hind liinbs remained extellded and exter- 
inska nsttute, S-171 77 Stockholm, Sv'leden, 
L, Olson, Department of Neuroscience, Inst anatomy of rat descending and ascending nally rotated. Inlprovernent was symmetri- 
tute, S-171 77 ~ t o c k h o n i ,  Sv'leden pathways (7). T o  stabilize the  lesioned area cal in six cases (28%) and asymmetrical in 

=To v,,hom correspondence be addressed E.mal ad the peripheral nerve bridges, we filled the rest. Loco~not ion involved four-limbed 
henrlch chenganeuro kl.se. the grafted area with a fibrin-based tissue stepping (Fig. 2, H through J ) .  Hind limbs 
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