
When confluent cells in culture are de- 
prived of serum growth factors, the selective 
pathway of lysosomal proteolysis is activated 
(2 ,  3).  T o  determine whether overexpression 
of human LGP96 affected this proteolytic 
pathway, n:e radiolaheled control CHO cells 
\vith [3H]le~~cine and transfected cells mitli 
[ ' 4 C ] l e ~ ~ c ~ n e  and then cultured both cell types 
on the same culture dishes to simultaneously 
follow degradation of 3H- and '"labeled 
proteins (14). Proteolysis was increased in the 
transfected cells. both in tlie Dresence and 
absence of serum, when compared with the 
colitrol C H O  cells (Fie. 4A).  Similar results , L> 

were obtained when control and transfected 
cells mere analyzed in separate culture dislies 
(7) .  Cells that expressed half the amount of 
l i~lman LGP96 as the transfectants shown in 
Fig. 4A also showed half tlie increased protein 
degradation rates when compared to those in 
C H O  cells, and cells transfected with plasmid 
containing no  cDNA degraded proteins at 
rates similar to those of the untransfected 
colitrol cells (7). 

Several other asnects of the transfected 
cells were ~~ l~af fec ted  by overexpression of liu- 
illan LGP96. For example, the percentage of 
lysosomes broken during cell homogenization 
was similar in control and transfected cells 
(7), and [3H]RNase A \vas taken LIP by cells 
and dlgested within endosolnes and lysosomes 
at norrnal rates (Fig. 4B). In addition, the cells 
grevr7 at norinal rates and had unaltered rates 
of protein synthesis (7). Finally, lysosomes 
isolated fro111 human LGP96-overexpressing 
cells were more actlve in the in vitro uptake 
and degradation of [14C]GAPDH under all 
conditions tested (Fig. 4C) .  

Thus, overexpression of human LGP96 in- 
creased the activity of tlie selective lysosolnal 
proteolytic pathway, and the level of LGP96 
appears to he one rate-limiting coinpollent of 
the degradation macliinery. It is not necessar- 
ily the only rate-limiting component, ho\vev- 
er, because overexpression of one protein iliay 
cause overexpression of lnteractilig proteins 
(15). Whether LGP96 plays a role in the 
selective uptake of proteins hy lysosomes, in 
addition to the binding of substrate proteins, 
remains to he studied. 
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B and T lymphocytes undergoing apoptosis in response to anti-immunoglobulin M an- 
tibodies and dexamethasone, respectively, were found to have increased amounts of 
messenger RNAfor the inositol 1,4,5-trisphosphate receptor (IP3R) and increased amounts 
of IP,R protein. lmmunohistochemical analysis revealed that the augmented receptor 
population was localized to the plasma membrane. Type 3 IP3R (IP3R3) was selectively 
increased during apoptosis, with no enhancement of type 1 IP3R (IP3RI). Expression of 
IP3R3 antisense constructs in S49 T cells blocked dexamethasone-induced apoptosis, 
whereas IP3R3 sense, IP3R1 sense, or IP3R1 antisense control constructs did not block 
cell death. Thus, the increases in IP3R3 may be causally related to apoptosis. 

C a l c i u m  entry into cells appears to he a 
critical early event in apoptosis (pro- 
grammed cell death) ( 1 ) .  In  thymocytes, 
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apoptosis elicited by glucocorticoids is asso- 
ciated with a sustained increase in cytosolic 
calcium concentration, and denletion of 
calcium with chelating agents blocks apop- 
tosls (2 ,  3 ) .  T h e  endonuclease that causes 
characteristic apoptotic cleavage of chro- 
matin is calclurn-dependent ( 2 ,  4 ) .  Calciurn 
entry also participates in cellular prollfera- 
tion, especially in lyinphocytes undergoing 
immune stimulation (5).  T h e  channels and 
ineclianisms that account for the cellular 
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entry of calcium that mediates cellular pro- 
liferation and apoptosis have been difficult 
to identify. Although mature lymphocytes 
proliferate when subjected to immune stim- 
uli, immature lymphocytes instead undergo 
apoptosis when stimulated in the same 
manner (2, 3). 

The IP3R may mediate calcium entry 
into lymphocytes and is localized on both 
the endoplasmic reticulum (ER) (6) and 
the plasma membrane (PM) (7). It cocaps 
with the T cell receptor-CD3 complex, 
which suggests that the IP3R on T cells 
participates in the entry of calcium that 
initiates proliferative responses (8). At least 
three types of IP3R, derived from three dis- 
tinct genes, have been discriminated (9, 
10). Although some differences in localiza- 
tion among these IP3R subtypes have been 
observed (9, 1 O), functional differences 
have not vet been uncovered. 

Here, we investigated whether IP3Rs are 
critical for lymphocyte apoptosis. In response 
to immune stimuli, mature B lymphocytes 
undergo proliferation and antibody formation, 
whereas immature B lymphocytes die by an 
apoptotic process (2, 3, 11). The WEHI-231 
cell line was derived from a phenotypically B 
cell lymphoma and undergoes apoptosis when 
stimulated by antibodies to immunoglobulin 
M (anti-IgM) (I 1). We examined the distri- 
bution of IP3R on WEHI-231 cells treated 
with anti-IgM. Flow cytometric analysis 
showed that the apoptotic cells have in- 
creased granularity, which is reflected as an 
increase in side light scatter; the cellular 
shrinkage and fragmentation results in a de- 
crease in forward light scatter (12) (Fig. 1A). 
An antiserum that recognizes all IP3R sub- 

types revealed a homogeneous population of 
staining in the dead cell population, with a 
mean fluorescence intensity an order of mag- 
nitude greater than the negligible staining 
evident in live and unstimulated control cells 
(Fig. 1, B and C). 

IP3R staining in the dead cells was restrict- 
ed to the area of the PM (Fig. ID). Because all 
of the cells still excluded trypan blue, they 
were intact and should not admit antibody 
molecules to the interior. Thus, the staining 

presumably represented the external PM sur- 
face of the cells. The antiserum was specific; 
immunoblot analysis revealed a single discrete 
band at 260 kD (Fig. 1E). The intensity of this 
band for extracts of dead WEHI-231 cells was 
six times that for live cells (Fig. 1E). We used 
Northern blot analysis to monitor mRNA for 
the three subtypes of IP3R in WEHI-231 cells 
in which apoptosis was initiated by anti-IgM 
(13). IP3R2 mRNA was not detected, IP3R1 
mRNA amounts were similar to those in con- 

Rg. 2. Differential re- 
sponse of IP,Rl and 
IP3R3 in WEHI-B cells 
undergoing apoptosis 
induced by anti-lgM. (A) 
Protein immunoblot de- 
tection of IP,R with affin- ? 
ity-purified subtype-spe- 3 
cific anti-IP3R1 and anti- 
IP3R3. C, control WEHl 
cell homogenates; lanes 
1 and 2, WEHl homoge- 
nates after 24 and 48 
hours, respectively, of anti-lgM exposure. (6) Fluorescence microscopy of WEHl cells undergoing 
apoptosis. WEHl cell suspensions in HBSS, 1 mM Hepes, and fetal bovine serum (FBS) (2%) were fixed, 
perrneabilized (14), and stained with subtype-specific anti-IP3R1 and anti-IP3R3 before and after 48 
hours of exposure to anti-lgM. Insets: WEHl cells, after exposure to anti-lgM, were stained with 
anti-IP3R1 and anti-lP3R3 that had been blocked with an excess of IP,Rl peptide and IP3R3 peptide, 
respectively. Results are from a representative experiment. Scale bar, 10 p.m. Each experiment was 
done three times with similar results. 

Fig. 1. Apoptotic WEHl B cells display enhanced 
IP3R immunoreactivity on their PM. (A) WEHI-231 b~~~ 
cell suspensions were analyzed for forward versus 
side light scatter after 48 hours of exposure to 
anti-lgM. (6 and C) Flow cytometric analysis of a400 
WEHl cells undergoing apoptosis. WEHl cell sus- g200 
pensions in Hanks' balanced salt solution (HBSS), Live Dead 

1 mM Hepes, and FBS (2%) were stained with O 
0 200400600800 

0 
affinity-purified anti-IP3R after 48 hours of expo- Forward acattw 10 

sure to anti-lgM. WEHl cells were electronically - 
gated from the live (6) and dead (C) populations in D 
(A). Open curve, background control cells stained 
with nonspecific rabbit immunoglobulin G and 
goat antibodies to rabbit fluorescein isothiocya- 
nate (FITC); blue curve, cells stained with affinrty- 
purified anti-IP3R and the same antibodies to FITC. 
(D) Localization of IP3R surface antigens by immu- 
nofluorescence. WEHI-231 cell suspensions were 
stained with affinrty-purified anti-IP3R before and 
after 48 hours of exposure to anti-lgM. Inset: After 
exposure to anti-lgM, WEHI-231 cells were 
stained with anti-IP3R blocked with an excess of purified IP3R. Scale bar, 10 pm. (E) Protein immunoblot detection of IP3R with affinity-purified anti-IP3R. Live 
versus dead populations were electronically gated as in (6) and (C) and sorted for protein immunoblot analysis after 48 hours of stimulation with anti-lgM. Land 
D, live and dead WEHl cells; molecular masses are shown at the left (in kilodaltons). (F) Detection of IP3R subtype by Northern blot analysis for mRNA in WEHl 
cells undergoing apoptosis. C, control WEHl cells; IgM, WEHl cells after 24 hours of treatment with anti-lgM. Type 1 and type 3 refer to oligonucleotide probes 
specific for IP3R1 and IP3R3, respectively. An 18s RNA probe was used as a control for the quantity of RNA. Results are from a representative experiment. 
Protein immunoblots and Northern blots were quantified on a digital scanner. All experiments were done three times with similar results. 
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trol cells, and IP3W mRNA amounts were mains of IP3R3 and IP3R1 (14) revealed trol cells, whereas IP3R1 protein amounts 
three to five times those in controls (Fig. IF). IP3R3 protein amounts associated with were similar in control and apoptotic cells 

Antibodies to unique cytoplasmic do- apoptosis that were 10 times those in con- (Fig. 2A). Permeabilized anti-IgM-treated 

Fi. 3. Protein immunoblot detection of IP3R with A C 3 6 12 hours C ('xwmol 
affinrty-purified subtype-specific anti-IP3R1 and Ip,R1 
anti-IP,R3. (Al Increase of IP,R3 in aw~tot ic thy- 

-- 
mocytes. Thymocytes cultked in ' RPMI 1640 
with FBS (10%) were incubated with 0.1 FM 9 
dexamethasone for 3,6, or 12 hours and stained g 
with anti-IP,R; C, control thymocytes. Upper pan- B 
el, protein imrnunoblot analysis with anti-IP3R1; IP,R1 
lower panel, IP3R1 blot stripped and reprobed 
with anti-IP,R~~ We primarily detected a 220- 
kD IP3R3 band in thymus tissue preparations; this 
size is in accordance with our observations in oth- 
er tissue preparations relating to the sensitivity of 
the IP3R to proteolysis. A 200-kD molecular mass 2 
marker is shown at the left. (B) Increase of IP3R3 in apoptotic S49 cells. Cells $ 
were incubated with 10 nM dexamethasone for 24.48. or 72 hours; C, control 1 S49 cell homogenates. Upper panel, anti-IP3R1 ; lower panel, anti-IP3R3. (C) 
Fluorescencb microscopy of thymocytes undergoing apoptosis. Thymocyte 
cell suspensions in HBSS, 1 mM Hepes, and FBS (2%) were fixed, prmea- 
biliied, and stained with affinity-purifed subtype-specific anti-IP3R1 and anti- 
IP3R3 before and after 12 hours of exposure to 0.1 )rM dexarnethasone. 

L 
E 

Insets: Thyrnocytes were stained with anti-IP3R1 and anti-IP3W that had been 
blocked with an excess of IP3R1 peptide and IP3!33 peptide, respectively. 
Results are from a representative experiment. Scale bar, 10 pn. (D and E) 
fluorescence microscopy of thyrnocytes and S49 cells undergoing apoptosis. 
Cells were fixed, permeabiliied, and stained with affinity-purified subtype- 
swif ic anti-IP,R1 and anti-IP,R3 before and after exposure to dexametha- 
sine. In (0). t h i  upper panel &ows the diffuse nature of anti-IP3R1 staining in 
the control thyrnocytes; the lower panel shows the punctate nature of anti- 
IP3R3 staining in thyrnocytes after 12 hours of exposure to 0.1 FM dexameth- 
asone. In (E), S49 cells were stained with anti-IP3R1 and anti-IP3W before and 
after 72 hours of exposure to 10 nM dexamethasone. Scale bar, 10 p.m. Each 
experiment was done three times with similar results. 

Fig. 4. IP3R3 antisense DNA transfection blocks 
lymphocyte death. (A) Protein immunoblot detec- 
tion of IP3R in S49 cells transfected with dexa- 
methasone-inducible IP3R3 antisense before (C) 
and 7 days after (I) induction of plasmids by 10 nM 
dexamethasone. Type 3, protein immunoblot 
analysis with anti-IP3R3; type 1, IP3R3 blot 
stripped and reprobed with anti-IP3R1. Molecular 
mass markers are shown at the left (in kilodaltons). 
(B) Agarose gel electrophoresis of DNA isolated 
from S49 cells transfected with dexamethasone- 
inducible plasmids containing 5' portions of IP3R3 
and IP3Rl in sense and antisense orientations 
after 4 days of exposure to 10 nM dexametha- 
sone. pMAM, S49 cells transfected with plasmid 
alone; 3AS, IAS, 3S, and 1S refer to S49 cells 
transfected with plasmids containing IP3R3 anti- 
sense, IP3Rl antisense, IP3R3 sense, and IP3Rl 
sense, reswctivelv. IC) Forward versus side liaht 

Control Control 

scatter (FSC ver& SSC) of S49 cells as &- 
sessed by flow cytometry after 7 days of exposure to 10 nM dexamethasone. S49 cells were transfected with dexamethasone-inducible plasmids containing 
5' portions of IP3R3 and IP3R1 in antisense or sense orientations; 10,000 cells were analyzed in each condition. The percentage of live cells in each cell line 
is indicated in parentheses; 13H]thymidine counts reflecting relative amounts of DNA synthesis are shown below these percentages. Resuls are from a 
representative experiment. (D) Protein immunoblot detection of IP3R in S49 cells transfected with constitutively expressed IP3R3 antisense before (C) and 4 
days after (D) treatment with 0.1 FM dexamethasone. Type 3, protein immunoblot analysis with anti-IP3R3; type 1, IP3R3 blot stripped and reprobed with 
anti-IP3R1. (E) Agarose gel electrophoresis of DNA isolated from S49 cells transfected with constitutively expressing plasmids containing 5' portions of IP3R3 
and IP3R1 in sense and antisense orientations after 2 days of exposure to 0.1 FM dexamethasone. pOPR, S49 cells transfected with plasmid alone. (F) 
Forward versus side light scatter of S49 cells as assessed by flow cytometry after 4 days of exposure to 0.1 FM dexamethasone. Results are from a 
representative experiment. These experiments were done three times with similar results. Standard deviations for the mean counts per minute in (C) and (F) 
are 1474, 1901, 4943, and 12,087 for pMAM 3S, IS, lAS, and 3AS, respectively, and 840, 520, 2030, and 12,573 for pOPR 3S, IS, lAS, and 3AS, 
respectively. 
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cells displayed a punctate distribution of 
. IP3R3 immunoreactive staining along the 

region of the PM. In contrast, no increase in 
staining was evident with anti-IP3R1, and 
intracellular staining was diffuse (Fig. 2B). 

To determine the generality of the cor- 
relation of increased IP3R3 with apoptosis, 
we treated rat thymocytes and murine S49 
thymoma cells with dexamethasone (1 5 ,  
16). The S49 cell line is highly sensitive to 
killing by glucocorticosteroids and has been 
extensively studied as a model for steroid- 
induced apoptosis (1 7). In thymocytes and 
S49 cells treated with dexamethasone, the 
amounts of IP3R3 were 20 times and 5 
times, respectively, those in controls; IP3R1 
decreased in both cell types (Fig. 3, A and 
B). The IP3R2 in thymocytes and S49 cells 
decreased in both cell types after dexameth- 
asone treatment (18). Immunohistochemi- 
cal analysis corroborated these findings 
(Fig. 3, C to E). Before dexamethasone 
treatment. onlv IP,R1 was detected in thv- 

I J 

mocytes. kfter 12 hours of dexamethasoie 
treatment, IP3R1 staining decreased and 
IP3R3 immunoreactivity in a second popu- 
lation of smaller cells was increased, with a 
punctate distribution along the PM. These 
results fit with the known greater sensitivity 
to glucocorticoid-induced apoptosis of the 
smaller, more immature cortical thymocytes 
relative to that of the larger, more mature 
medullary cells (15, 19). In thymic sections, 
IP3R3 immunostaining was faint in control 
thymocytes but increased in cortical thymo- 
cytes after the rats received intraperitoneal 
injections of dexamethasone; no staining 
was observed in medullary regions (18). 

To determine the functional relation be- 
tween elevations in IP3R3 and apoptosis, we 
constructed plasmids containing 5' portions 
of IP3R3 and IP3R1 in sense and antisense 
orientations (20). Stably transfected cell lines 
were obtained by introducing dexametha- 
sone-inducible and constitutively expressing 
plasmids into the T cell thymoma S49. Apop- 
tosis was evoked by treatment with dexameth- 
asone, which is well known to cause growth 

arrest and inhibit proliferation of S49 cells 
(17). With either inducible or constitutive 
plasmids, cells expressing IP3R3 antisense 
were protected from glucocorticoid-induced 
apoptosis (Fig. 4, B, C, E, and F) as moni- 
tored by light scatter analysis, [3H]thymidine 
incorporation (21 ), and DNA fragmentation 
(1 7). Cells transfected with IP3R3 sense and 
IP3R1 antisense constructs were not protect- 
ed and underwent growth arrest and morpho- 
logical changes associated with apoptosis. 
IP3R3 antisense protection against apoptosis 
was associated with an inhibition of the five- 
fold dexamethasone-induced increases in the 
amount of IP3R3 protein in apoptotic cells 
(Fig. 4, A and D). Dexamethasone-treated 
S49 control cells undergoing apoptosis 
showed increases in intracellular calcium 
concentration [CaZ+], levels that were asso- 
ciated with alterations in light scatter (Fig. 
5) (22). Transfections with either dexa- , .  , 
methasone-inducible or constitutive IP3R3 
antisense plasmids prevented these [Ca2+], 
elevations, whereas IP3R3 sense, IP,Rl 
sense, or IP3R1 antisense control plasmids 
did not. 

Our data show that transfection with 
IP,R3 antisense constructs selectivelv Dre- , . 
vents lymphocyte apoptosis and that interfer- 
ence with a~o~tos i s  mav result from decreased . . 
calcium entry in the IP3R3 antisense-express- 
ing cell lines, inhibition of signaling path- 
ways specific for IP3R3, or both. These find- 
ings imply a causal role for IP3R3 in lympho- 
cyte apoptosis and also indicate a possible 
mechanism for apoptosis, namely augmenta- 
tion of Ca2+ entrv through IP,R3 Ca2+ " 
channels in the PM. Our results support other 
evidence for a major role of CaZ+ entry in 
apoptosis (2 ,3 ,  16) and suggest an interesting 
dichotomy between IP3R subtypes that may 
explain how calcium can promote such op- 
posed cellular functions as proliferation and 
death. 

The localization of newly expressed IP3R 
to the PM in apoptotic lymphocytes, as well 
as the selective up-regulation of IP3R3 in 
these cells, implies that the population of 

Fig. 5. Forward versus Dexarnethasone 
side light scatter of 549 Control 48 hours 72 hours 96 hours 
~ 3 ' ~ s  3AS and 3AS 
cells as assessed by flow 
cytometry before and 
after 2,3,  and 4 days of 
exposure to 0.1 JLM 5 
dexamethasone. p3'SS 
refers to 549 cells with 
the constitutively ex- V) 

pressing IP,R3 anti- Fi 
sense plasmid turned 
off; 3AS refers to S49 
cells constitutively ex- 
pressing IP,R3 antisense. The percentages of live cells in each cell line are indicated in parentheses. 
[Ca2+], values for live (blue) and dead (red) populations of cells are indicated in brackets; 10,000 cells 
were analyzed in each condition. Each experiment was done three times with similar results. 

IP3R3 associated with apoptosis is localized 
to the PM, where it might regulate capaci- 
tative CaZ+ entry (23). In unstimulated 
lymphocytes, antibodies directed to the cy- 
toplasmic domain of IP3R3 also stained the 
ER and nuclear membrane (1 8). Bell and 
associates (9) also observed IP3R3 staining 
of the ER and the nuclear membrane of 
COS cells. IP3R3 is also selectively aug- 
mented in dorsal root ganglion cells under- 
going cell death induced by deprivation of 
nerve growth factor, which suggests a simi- 
lar role for IP3R3 in neuronal apoptosis 
(18). A selective association of IP3R3 with 
calcium entry into apoptotic lymphocytes 
suggests that drugs blocking IP3R3 but not 
IP3R1 could inhibit apoptosis without dis- 
rupting calcium release mediated by IP3R1 
in the ER. Such drugs might have therapeu- 
tic relevance in conditions associated with 
apoptosis, such as the loss of CD4+ lympho- 
cytes in acquired immunodeficiency syn- 
drome (24). 
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The POU transcription factor Oct-6, also known as SCIP or Tst-I, has been implicated 
as a major transcriptional regulator in Schwann cell differentiation. Microscopic and 
immunochemical analysis of sciatic nerves of Oct-6-'- mice at different stages of 
postnatal development reveals a delay in Schwann cell differentiation, with a transient 
arrest at the promyelination stage. Thus, Oct-6 appears to be required for the transition 
of promyelin cells to myelinating cells. Once these cells progress past this point, Oct-6 
is no longer required, and myelination occurs normally. 

Schwann  cells are i ~ ~ v o l v e d  in the trophic 
support and insulation of axons and are the 
only glial cell type in peripheral nerve 
trunks. T h e  two types of Schwann cells, 
myelinating Schwann cells associated ivit11 
axons greater than 1 1J.m in diameter and 
nonmyelinating cells associated with multi- 
ple lower caliber axons, both differentiate 
from neural crest-derived Sch\vann cell 
precursors. Myelination initiation correlates 
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with axon diameter and is governed by 
axonal signals that are as yet not under- 
stood ( 1  ). 

A number of transcription factors have 
been proposed to be involved in Schwann 
cell differentiation and myelination (2 ) .  
Prominent among those is the POU domain 
transcription factor Oct-6 (also kno\vn as 
SCIP or Tst-1) (3). T h e  Oct-6 protein is 
expressed in the Sch\vann cells of the sci- 
atic nerve and the sympathetic trunk from 
embryonic day 16 ( E l  6 )  onward (4). During 
postnatal ~ l e r \ ~ e  development, the expres- 
sion of Oct-6 inRNA is gradually do\vn- 
regulated and exti~lguished, with only spo- 
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