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Oxygenic Photoautotrophic Growth Without 
Photosystem l 

J. W. Lee, C. V. Tevault, T. G. Owens, E. Greenbaum* 

Contrary to the prediction of the Z-scheme model of photosynthesis, experiments 
demonstrated that mutants of Chlamydomonas containing photosystem II (PSII) but 
lacking photosystem I (PSI) can grow photoautotrophically with 0, evolution, using 
atmospheric CO, as the sole carbon source. Autotrophic photosynthesis by PSI- 
deficient mutants was stable both under anaerobic conditions and in air (21 percent 
0,) at an actinic intensity of 200 microeinsteins per square meter per second. This PSI1 
photosynthesis, which was sufficient to support cell development and mobility, may 
also occur in wild-type green algae and higher plants. The mutants can survive under 
2000 microeinsteins per square meter per second with air, although they have less 
resistance to photoinhibition. 

111 the Z scheme, first proposed by Hill and 
Bendall ( I ) ,  PSlI can split water hut is not 
thought to be able to perforln one of PSI'S 
assigned filnctions: the  r e d ~ ~ c t i o n  of ferre- 
doxin (Fd)/nicotinamide adenine dinucle- 
otide phosphate (NADP") ,  which is essen- 
tial for C02  assimilation. T h e  Z scheme 
therefore reauires that both PSII and PSI 
work in  sequence for complete photosyn- 
thesis, using water as the  source of electrons 
and CO, as the terminal electron acceptor. 
Despite some disagreenlent (2-5), the  Z 
scheme has become the  textbook model of 
photosynthesis (6,  7). Sustained photoas- 
sirnilation of C02 and evolution of Hz and 
0, in minimal ~nediunl  can be achieved by 
the PSII light reaction without involve- 
ment  of PSI in a PSI-deficient mutant of 
Chlamydomonas grown photoheterotrophi- 
cally with the use of a n  organic nutrient 
(acetate) (8). Here we report that PSI- 
deficient lnutants of Chlamydomonns were 
capable of growing photoautotrophically. 
Because the  Z scheme requires both PSI and 
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PSII n~orking in series, it predicts that PSI- 
deficient lnutants of green algae will not  
grow photoa~~totropl~ical ly .  T h e  discovery 
of photoautotrophic growth of PSI-defi- 
cient green algae without any organic nu- 
trients, therefore, suggests the existence of 
PSII photosynthesis that is an  alternative to 
the  Z scheme. Our  discovery may provide 
a n  explanation for Inany reports of anoma- 
lous i l ~ ~ a n t ~ ~ m  requirements that cannot be 
explained by the  Z scheme. 

P h o t o a ~ ~ t o t r o ~ h i c  growth of several PSI- 
deficient mutants of Chhmydomonns, such 
as F8 and B4, was observed when uhotohet- 
erotrophically grown aliquots were inoculat- 
ed into 75 ml of ~nlnilllal medi~lln (9)  in 
sterilized Erlenlneyer flasks and incubated 
under continuous actinic illumination [pho- 
tosynthetically active radiation (PAR) of 20 
lnicroeinsteins (/J-E) ~ n ~ " ~ ' ]  provided by 
daylight fluorescent lamps (an  einstein is 
the energy of 1 lnol of photons). T h e  min- 
imal medium contained only water and min- 
eral elements. T h e  flasks that contained the 
liquid culture were capped with phenolic 
screw caps that allowed air ( C 0 2 )  exchange. 
Constant shaking of the  cult~lre flasks with a 
gyratory shaker at a speed of 140 rpm facil- 
itated air exchange for CO, supply. Under 
these conditions, the algal cultures grew for 
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months. T h e  initial poplllation i~n~nediate ly  
after inoculation was about 5.0 X lo4 cells 
per milliliter for all cultures. Based o n  pop- 
ulation growth, monitored by counting of 
algal cell density in the media with a micro- 
scopic hemacytorneter, the algal cell dou- 
bling time in their logarithmic growth phase 
was 10. 10, and 6.7 days for F8. B4, and 
wild-type 137c, respectively, at the relative- 
ly low light intensity of 20 pE m p 2  s-'. T h e  
logarithmic phase lasted about 40 to 60 days, 
followed by a nearly linear growth phase. 
After about 100 days of incubation, the cell 
populations were Inore than 5L1 times the 
size of the initial population. 

Wi th  the  use of the above photoau- 
totrophically grown cultures as inocula, 
photoautotrophic growth was further dem- 
onstrated a t  moderate actinic intensity 
(PAR, 200 pE m p 2  s p L ) ,  where the growth 
was much faster. In  these exneriments we 
studied photoautotrophic growth in ver t~cal  
glass growth tubes that were specially de- 
signed for algal growth and simultaneous 
measurement of CO, photoasslrnilation and 
O2 and Hz evolution, using a n  in-line COZ 

101  

0 F8ina1r  

9 F8 in helium 
8 - - 8 4 i n a i r  

,*' 

- 

1 O 84  in helium 0' 
6 - 

E 5 -  137c n air 0 - 
6 4 - 0 137c in helium/'* 

0 1 2 3 4 5 6  

Time (days) 

Fig. 1. Photoautotrophic growtli curves of PSI- 
deficient mutants F8 (diamonds) and 8 4  (squares) 
and wild-type 137c (circles) in the presence of 700 
ppm GO, in either air (open symbols) or helium 
(solid symbols) during cycles of 12 hours of dark- 
ness and 12 hours of g h t  (PAR, 200 pE m-' s-'). 
The population growth was measured by chl con- 
tent (A) and cell density (B) of the cultures in the 
minimal medium. The preculture was prepared on 
a rotary shaker under overhead room lights; atmo- 
spheric CO, was the sole carbon source. The 
growth experiment used a specially designed flow 
system with CO, in the carrier gas and a bank of 
fluorescence lamos for illumination. 

analyzer (LI-6252, Li-Cor Instruments) 
wit11 a flow-detection system described pre- 
viously (10).  Day and night cycles were 
mimicked by 12 hours of darkness and 12 
hours of illumination (200 pE m p 2  sp ' ) ,  
provided by daylight fluorescent lamps that 
were controlled by an  electronic timer. T h e  
liquid culture 111 each tube (38 cm long and 
3 cm in  diameter) was continuously bub- 
bled with 700 parts per million (ppm) C O L  
In helium or air a t  a rate of 50 ml min-I to 
supply C O L  and to agitate the  algal suspen- 
sion. Algal growth was measured by cell 
population and chlorophyll (chl) content. 
Both chl content and cell population rose 
quickly with time (Fig. 1 ) .  W i t h  the  supply 
of 700 pprn CO, in alr and 200 pE m p 2  sp '  
of illumination, the  chl doubling times were 

1.0, 1.1, and 0.60 days for F8, B4, and 137c, 
respectively, which lasted for 2 to 3 days. 
Initial exponential growth, followed by lin- 
ear growth as self-shading and nutrient de- 
pletion set in, is the normal pattern for 
photoautotroph~cally grown algae. 

T h e  mutants were able to grow not only 
in air but also in anaerobiosis when C O ,  was 
supplied in a pure helium atmosphere (Fig. 
1).  T h e  pattern of photoautotrophic growth 
under COL in helium was similar to that for 
CO, In air. This indicates that neither aer- 
obic processes such as rnitochondrial respi- 
ration or chlororespiration (1 1 ,  12) nor an- 
aerobic hydrogenase activity (13) is required 
for cell grorvth. Although the absence of 
atmospheric O2 slowed the grorvth of the 
wild type by about 796, it did not affect the 

Time (hours) 

Fig. 2. (A) Photoassimilation of GO, and zero-rate production of H, by mutant F8 and wild-type 137c in 
the presence of 700 ppm GO, in a r .  (B) Photoassimilation of GO, and evouton of 0, and H, by F8 in 
the presence of 700 ppm GO, in helium. In each case, the intial algal popuatlon in the minimal medium 
(1 40 ml) was such that the chl concentraton was about 0.4 pg m i .  The actinic illumination (PAR, 200 
pE m-' s-') was provided by daylight fluorescent lamps. The upward- and downward-polnting arrows 
mark the on and off phases, respectively, of the actinic illumnation. 

SCIETCE VOL. 273 19 JULY 1996 365 



growth rate for F8 and B4, vvhich was sup- 
ported solely by PSII photosynthesis. 

The  evidence that the carbon and elec- 
trons needed for cell growth are acauired - 
from CO, fixation and water splitting was 
obtained by simultaneous measurement of 
C O L ,  OL, and HZ in the carrier gas effluent 
after bubbling through the grovvth tubes 
described above. Both C 0 2  uptake and O L  
evolution were light dependent (Fig. 2). 
Pl~otoassimilation of C 0 2  by the PSI-defi- 
cient lnutants was stable in both aerobic 
(Fig. 2A) and anaerobic conditions (Fig. 
2B). During steady-state photosynthesis, 
about 40% of the CO, supplied by the 
carrier gas was taken up-by the algae, cor- 
responding to a nlaximal photosynthesis 
rate of about 100 pmol of CO, hour-' per 
~ni l l iera~n of chl. Under aerobic conditions. " 
hydrogenase ( H z  production) was inactivat- 
ed (Fig. 2A). However, the pattern and 
rates of CO, photoassi~nilation under aero- 
bic conditions were similar to those under 
anaerobic conditions (Fig. 2B). These re- 
sults indicated that neither hydrogenase ac- 
tivity nor any respiratory process (such as 
tnitochondrial respiration or chlororespira- 
tion) is required by PSII photosynthesis. 
Even under anaerobic conditions in which 
hydrogenase is activated, photoevolution of 
H, occurred only upon the initial onset of 
actinic illutnination when the Calvin cycle 
for C02 reduction had not been fully acti- 

vated. A t  steady state, H L  evolution ap- 
oroached zero and reduction of CO, bv the 
kalvin cycle became the exclusive sink for 
reductant generated by photosynthetic vva- 
ter splitting. 

The sitn~~ltaneous measurements of CO, 
uptake and OL evolution (Fig. 2B) also 
revealed that the photosynthetic quotient 
(COL uptake/02 evolved) can be less than 
unity. After the first light cycle, the quo- 
tient ( C 0 2 / 0 2 )  during steady-state photo- 
sy~lthesis was as low as 0.90 in both the 
PSI-deficient algae and the wild type. The  
observed photosynthetic quotient is expect- 
ed if CO,  is reduced not onlv to the level of 
sugars, which vvould correspond to a quo- 
tient of unitv, but also to the level of livids , , 

and proteins, both of which are necessary 
for cell growth and corresponii to photosyn- 
thetic quotients of <1 (14). The  measured 
photosynthesis therefore is consistent with 
the observed cell growth. PSII photosynthe- 
sis also supports cell development. 

A t  the early stage of culture, within 30 
days of illutnination at 20 p E  n P 2  s P 1  (or 
within the first 2 days at 200 p E  1nP2 sP1),  
the PSI-deficient algae were mostly static 
green cells lacking flagella. The cellular 
volume, however, was about three to four 
times larger than that of the wild-type cells. 
After about 60 days of incubation under 20 
,,E In--? s- l  (or after 3 davs under 200 LE 
- 7 

m - S-I),  many of the mutant cells [level- 

I Actinic on I 

F8 and 8 4  "1 

-40 I I I I I I I I 

0 2 4 6 8 10 12 14 16 

Time (s) 

Fig. 3. A typlcal set of reversble P700 photo oxidation data obtained from thylakolds that were Isolated 
from photoautotrophically grown cells of mutants F8 (solid symbols) and B4 (open symbols) and 
wild-type 137c (ne) .  The thylakoids were treated with cyande (CN-) to inhibit pastocyanln, whlch 
othewlse may Interfere wlth P700 measurement by donating t s  electrons to the PSI reactlon centers. 
The chl concentraton was 47 pM for a samples (thyakoids). Before the measurements, the samples 
were dark-adapted in the presence of ascorbate so that the PSI reaction centers were a kept In their 
reduced state (P700). The photoconversion of P700 to P700' was measured as the absorbance 
change at 697 nm. The downward-pointng arrow marks the onset of actlnlc illumlnatlon. 

oped flagella and swam actively. Similar 
development was observed under anaerobic 
conditions. 

ivlutant F8 was obtained from mutagen- 
esis by ultraviolet treatment and was char- 
acterized as a stringent mutant that com- 
pletely lacks the core of PSI (CPI) and two 
low molec~~lar  weight (20 and 21 kD) 
polypeptides (15). Mutant B4 was obtained 
after lnetronidazole enrichment (16). Be- 
fore and after our growth experiments, the 
PSI content of these mutant algae was ex- 
amined and the complete absence of PSI 
was confirmed. PSI reaction center (P700) 
photochemical activity was measured by ab- 
sorbance spectroscopy in thylakoid metn- 
branes that were isolated from these photo- 
a~~totrophically grown algal cells (Fig. 3).  
N o  P700 activity was detected in either F8 
or B4 mutants, vvhereas the P700 signal was 
easily seen in the wild type Based on signal- 
to-noise ratio, the chl:P700 ratio was larger 
than 30,000: 1 in F8 and B4, whereas it was 
943 (-t40):1 in 137c. These PSI-deficient 
m ~ ~ t a n t s  grow photoautotrophically without 
PSI. PSII is sufficient to drive photosyn- 
thetic electron transport from water to the 
terminal acceptor CO, in living cells. The  
per-photon energy captured by PSII photo- 
chemistry at 680 nm (1.8 eV) is energeti- 
cally sufficient to drive water splitting and 
the reduction of C 0 2 ,  with a maximum 
energy efficiency of about 68% (8). There- 
fore, although our findings contradict the 
belief that PSI is essential for oxygenic pho- 
tosynthesis and for photoautotrophic 
grovvth with water as the electron donor, 
they still obey the laws of thertnodynamics. 

The role of PSI in photosynthesis could 
therefore be accessory but beneficial for 
natural survival. PSI enhanced the rate of 
photoautotrophic growth by about 30 to 
40% in 137c, as compared with the PSI- 
deficient mutants F8 and B4 (Fig. 1 ) .  Fur- 
thermore, PSI also conferred resistance to 
photoinhibition. As de~nonstrated by a 
photoautotrophic growth experiment under 
high light intensity (PAR, 2000 p E  m P 2  
s-'; which is equivalent to f ~ l l l  sunlight in 
summer) with air, the mutants grew from an 
initial population of 6.5 x 104 cells per 
milliliter to a final culture density of about 
8.5 X 10' cells per milliliter in 12 day and 
night cycles, and 46.6%~of the cells became 
colorless (photobleached),vvhereas the wild 
type reached a culture density of 1.72 x lo6 
cells per tnilliliter and only 7.8% of the cells 
were photodamaged. These results indicate 
that PSI-deficient mutants can grow photo- 
a~~totrophically even under high light in- 
tensity with air, although they have less 
resistance to photoinhibition than does the 
wild type. 

Photoautotrophic grovvth similar to that 
seen ~ i t h  F8 and B4 was observed in initial 
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experiments using some but not all other 
nuclear PSI-deficient mutants (mutants 
were provided by the Duke University 
Chlamydomonas Genetic Center). Mutants 
ac9 (CC-521), ac80 (CC-544), and F23 
(CC-1062) and a chloroplast PSI-deficient 
mutant, 10-3C (CC-2046), demonstrated 
photoautotrophic growth, whereas mutants 
ac-u-g-2-3.7 (CC-703) and ac-215 (CC-
1234) did not. 

Debate has centered about whether the 
quantum requirement for photosynthesis is 
less than or greater than eight photons (hv) 
per molecule of Oz evolved. Some conclude 
that the minimal quantum requirement is 5 to 
6 hv/Oz in wild-type green algae (17, 18). 
Such values, if correct, cannot be explained 
by the Z scheme as it predicts a quantum 
requirement of at least 8 hv/Oz. These previ­
ously reported quantum requirements may, 
however, be consistent with the PSII photo­
synthesis demonstrated in the PSI-deficient 
mutants of green algae such as F8, B4, ac9, 
and 10-3C. The minimal quantum require­
ment for PSII photosynthesis should be 4 
hv/Oz, because PSII photosynthesis uses a 
single light reaction (PSII) instead of two 
(PSI and PSII). Pathway studies with the 
chemical inhibitors 3 [3,4-dichloropheny 1] -
1,1-dimethylurea, 2,5-dibromo-3-methyl-6-
isopropyl-p-benzoquinone, 2-n-nonyl-4-hy-
droxyquinoline-N-oxide, and carbonyl cya-
nide-p-trifluoromethoxyphenylhydrazone in­
dicated that in PSII photosynthesis, electron 
flow from PSII to Fd/NADP+ reduction is 
through the plastoquinone pool and the cyto­
chrome b/f complex (19). When both practi­
cal energy loss (such as a loss of about 15% 
excitations in PSII antenna) and involvement 
of PSI activity (such as PSI cyclic photophos-
phorylation) are considered, a quantum re­
quirement (4 hv/Oz) for PSII photosynthesis 
can explain the reported values of 5 to 6 
hv/Oz in wild-type green algae (17, 18). The 
previously reported quantum requirement (5 
to 6 hv/02) may suggest that PSII photosyn­
thesis can occur even in wild-type algae. 

Measurements for many C3 higher 
plants have shown a quantum requirement 
of < 8 hv/Oz, such as 7.67 ± 0.10 hv/Oz 

for Atriplex littoralis and 7.69 ± 0.16 hv/Oz 

for Vicia faba (20). This finding, again, 
cannot be explained by the Z scheme. 
Based on high energy consumption in the 
multiple-cell tissue, estimates have indi­
cated that the minimal quantum require­
ment for Z scheme photosynthesis would 
be at least about 10 hv /0 2 in C3 higher 
plants (14, 21). Because PSII photosyn­
thesis can have twice the energy efficiency 
of the Z scheme, the observed quantum 
requirement in these higher plants can, in 
principle, be explained by the occurrence 
of PSII photosynthesis. Therefore, PSII 
photosynthesis may occur not only in 

green algae but also in higher plants, and 
the Z scheme may not be the only mode of 
oxygenic photosynthesis. 

REFERENCES AND NOTES 

1. R. Hill and F. Bendall, Nature 186, 136 (1960). 
2. D. I. Arnon, H. Y. Tsujimoto, B. D. McSwain, ibid. 

207, 1367(1965). 
3. S. J. Pirt, Y. K. Lee, A. Richmond, M. W. Pirt, J. 

Chem. Tech. Biotechnol. 30, 25 (1980). 
4. B. A. Osborne and R. J. Geider, Plant Cell Environ. 

10, 141 (1987). 
5. D. I. Arnon and J. Barber, Proc. Natl. Acad. Sci. 

U.S.A. 87,5930(1990). 
6. L. Stryer, Biochemistry (Freeman, New York, ed. 4, 

1995), pp. 658-664. 
7. F. B. Salisbury and C. W. Ross, Plant Physiology 

(Wadsworth, Belmont, CA, ed. 3, 1985), pp. 191-
194. 

8. E. Greenbaum, J. W. Lee, C. V. Tevault, S. L. 
Blankinship, L. J. Mets, Nature 376, 438 (1995). 

9. The composition of the minimal medium was essen­
tially the same as that of N. Sueoka [Proc. Natl. Acad. 
Sci. U.S.A. 46, 83 (1960)], except that the concen­
trations of NH4CI, CaCI2, and MgS04 were 7.5,0.35, 
and 0.41 mM, respectively. 

10. J. W. Lee, S. L. Blankinship, E. Greenbaum, Appl. 
Biochem. Biotechnol. 51/52, 379 (1995). 

11. Y. W. Kow, D. L. Erbes, M. Gibbs, Plant Physiol. 69, 
442(1982). 

The plague bacillus Yersinia pestis persists 
among certain wild rodent populations in 
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primarily by fleas (I). After being ingested 
in a blood meal, the bacteria multiply in 
the flea gut and form a mass that can 
occlude the proventriculus, a spined 
chamber located between the esophagus 
and midgut. Such fleas are said to be 
"blocked" because they are unable to 
pump blood into their midgut. During per­
sistent but futile attempts to feed on a new 
host, a blocked flea regurgitates infected 
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blood into the bite site, thus transmitting 
plague (2). 

The events after transmission that lead 
to disease in mammals are well studied, but 
the molecular and genetic mechanisms by 
which Y. pestis colonizes and blocks its in­
sect host have rarely been addressed (3, 4). 
A pigmented Y. pestis phenotype, caused by 
the storage of exogenous hemin or of Congo 
red dye in the outer membrane of bacteria 
at 26°C or lower (5), is" suited to the hemin-
rich, ambient temperature environment of 
the flea gut. The hemin storage (hms) locus 
responsible for this phenotype consists of 
hmsF and hmsH, which encode outer mem­
brane proteins, and hmsR, whose product 
has not been characterized (6). Mutation to 
a nonpigmented phenotype often occurs by 
deletion of a 102-kb chromosomal segment 
termed the pgm locus that includes hmsHFR 
(7), and it has been reported that a nonpig­
mented Y. pestis did not survive in fleas (8). 

Role of the Yersinia pestis Hemin Storage (hms) 
Locus in the Transmission of Plague by Fleas 
B. Joseph Hinnebusch,* Robert D. Perry, Tom G. Schwan 

Yersinia pestis, the cause of bubonic plague, is transmitted by the bites of infected fleas. 
Biological transmission of plague depends on blockage of the foregut of the flea by a mass 
of plague bacilli. Blockage was found to be dependent on the hemin storage (hms) locus. 
Yersinia pestis hms mutants established long-term infection of the flea's midgut but failed 
to colonize the proventriculus, the site in the foregut where blockage normally develops. 
Thus, the hms locus markedly alters the course of Y. pestis infection in its insect vector, 
leading to a change in blood-feeding behavior and to efficient transmission of plague. 
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