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Complex Optical Surfaces Formed by Replica
Molding Against Elastomeric Masters

Younan Xia, Enoch Kim, Xiao-Mei Zhao, John A. Rogers,
Mara Prentiss, George M. Whitesides*

Complex, optically functional surfaces in organic polymers can be fabricated by repli-
cating relief structures present on the surface of an elastomeric master with an ultraviolet
or thermally curable organic polymer, while the master is deformed by compression,
bending, or stretching. The versatility of this procedure for fabricating surfaces with
complex, micrometer- and submicrometer-scale patterns was demonstrated by the
production of (i) diffraction gratings with periods smaller than the original grating; (ii)
chirped, blazed diffraction gratings (where the period of a chirped grating changes
continuously with position) on planar and curved surfaces; (iii) patterned microfeatures
on the surfaces of approximately hemispherical objects (for example, an optical surface
similar to a fly’s eye); and (iv) arrays of rhombic microlenses. These topologically com-
plex, micropatterned surfaces are difficult to fabricate with other techniques.

Replica molding of an organic polymer (for
example, polyurethane, polymethylmethac-
rylate, or epoxy) against an elastomeric
master [made, for example, of poly(dimeth-
ylsiloxane) (PDMS)], while that master is
deformed, provides a strategy for the fabri-
cation of complex micropatterns on surfac-
es. Deformation of the elastomeric master,
followed by replication of the structures
present on the surface of the deformed mas-
ter in the rigid polymer, provides a route to
structures that would be impractically diffi-
cult to generate through other procedures.
Molding and embossing of organic polymers
against rigid masters is used to manufacture
optically functional microstructures such as
diffraction gratings (1) and compact disks
(2). The procedure described here differs in
the use of an elastomeric master, and im-
portant features of the replica structure are
generated by the mechanical deformation
of this master (3, 4). Deformation of the
elastomeric master occurs isotropically, and
simple, regular, planar microstructures
present on the original surface can be trans-
formed into topologically and spatially
complex microstructures in the replica with
good preservation of optically relevant
characteristics, such as grating regularities
and blazing.

In the procedure for replica molding
against an elastomeric master under me-
chanical compression (5, 6) (Fig. 1A), a
liquid prepolymer reaction mixture of
PDMS is cast against a rigid master whose
surface has been patterned in an appropri-
ate relief structure (a diffraction grating or a

Y. Xia, E. Kim, X.-M. Zhao, J. A. Rogers, G. M. White-
sides, Department of Chemistry, Harvard University,
Cambridge, MA 02138, USA.
M. Prentiss, Department of Physics, Harvard University,
Cambridge, MA 02138, USA.

*To whom correspondence should be addressed.

more complex structure made by photoli-
thography or micromachining). After cur-
ing, the cross-linked PDMS is peeled from
the master; its surface replicates the surface
of the rigid master. These replicated fea-
tures are then reconfigured by the mechan-
ical compression of the elastomeric master,
and the deformed structure is replicated by
the casting of ultraviolet-curable liquid
polyurethane (PU) against it. If desired, this
procedure can be repeated, with the PU
replica used as the starting point, to make
structures more complex than can be gen-
erated in one cycle (although with some
degradation in the quality of the fabricated
optical surface).

In the procedure that we used to fabri-
cate diffraction gratings on cylindrical sur-
faces (Fig. 1B), a thin PDMS master (=50
pwm thick) was bent to make conformal
contact with a curved surface coated with a
thin film of liquid PU. After curing of the
PU, the PDMS master was removed to re-
veal the PU replica on the surface of the
cylindrical substrate. A similar procedure
was used to produce an approximately
hemispherical object having micropat-
terned relief structures on its surface (Fig.
1C). We mounted a thin PDMS master
(~1 mm thick) across the end of a hollow
glass tube and deformed it by applying pos-
itive or negative pressure through the tube.
The resulting surface was replicated in PU.

Cross-sectional scanning electron micro-
graphs (SEMs) (Fig. 2, A through C) show a
square-wave test pattern produced in PU
over several cycles of replication in PDMS,
compression, and replication in PU. Using
this test structure, we found that two cycles
of compression and replication reduced the
size of some features (that is, the recessed
areas on the master) from ~1.6 pm to ~200
nm and reduced the period of this test pat-
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tern from ~3.6 to ~1.5 pm. During the
cycles of compression and replication, the
dimensions of the recessed areas decreased
more than those of the raised areas. The
reductions in dimensions that were observed
were consistent with the computer-simulat-
ed results (Fig. 1A) (7). Because profiles of
the relief microstructures on the elastomeric
master changed in a predictable and control-
lable way under mechanical deformation,
the master could be fabricated such that the
relief microstructures have the proper pro-
files after deformation. Figure 2B is an ex-
pansion of the smallest features (~200 nm)
that have been made; a larger field view of
these features (Fig. 2C) illustrates their reg-
ularity. This procedure thus allows the for-
mation of gratings with a range of values of
the period starting from a single master.

By compressing one end of the elastomeric
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Fig. 1. Schematic procedures for molding-repli-
cation against an elastomeric master under (A)
mechanical compression, (B) bending, and (C)
stretching. In the finite element analysis of the ma-
terial response of the PDMS master to mechanical
compression, it was assumed that the top surface
of the PDMS master was stress-free and that the
Poisson’s ratio of PDMS was 0.4 [see (7)].
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master more than the other, we were able to
fabricate a chirped diffraction grating—a grat-
ing whose period changes continuously with
position (8). More interestingly, the shape of
the diffracting elements was largely preserved
in this process: if we used a blazed grating as
the starting master, the resulting chirped PU
replica was also a blazed grating (Fig. 3, A and
B). The period (A) of this chirped, blazed
grating changed continuously from a value of
~1.55 to ~1.41 pum over a distance of ~0.9
cm: the rate of chirping (dA/dz) was ~1.6 X
1073, This grating was characterized in trans-
mission at normal incidence. Figure 3C shows
the diffraction patterns (the zero-order and
the two first-order peaks) of the PDMS mas-
ter, its PU replica, and the chirped PU grat-
ing. The PDMS grating and its PU replica
were not operated in the blazing condition.
The two first-order diffraction peaks had sim-
ilar intensities (9). ,

The relief pattern on the surface of a
planar, chirped, blazed grating could be eas-
ily transferred onto a curved surface by rep-
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Fig. 2. (A) Cross-sectional SEMs of the original
master (generated in a photoresist film coated on a
silicon wafer by photolithography) and the PU rep-
licas generated after different cycles of replication in
PDMS, compression, and replication in PU. Gold
(~60 nm thick) was sputtered onto the PU replicas
before the SEM images were taken. (B) An enlarge-
ment and (C) a larger field. view of the smallest
features (~200 nm) that have been fabricated by
this procedure.
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lica molding against a thin PDMS master
cast from this planar grating (Fig. 1B). Fig-
ure 4A is an optical photograph of a
chirped, blazed grating that was fabricated
on a negative cylindrical lens [a concave
grating (1)]. The shape of the diffracting
elements was preserved in the process of
bending and replication (Fig. 4B).

Figure 4, C and D, shows SEM images of
a hemispherical PU object with a pattern of
relief microfeatures on its surface (a fly’s
eye; Fig. 1C) (10). The shape of this poly-
meric object can be easily tuned by chang-
ing the thickness of the PDMS master, the
applied pressure, or both. A range of differ-
ent relief patterns could be made; the small-
est feature had a size of ~1.5 pm.

In addition to reducing the size of fea-
tures, mechanical compression can also be
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Fig. 3. Cross-sectional SEMs of (A) a commercial
blazed diffraction grating and (B) selective regions of
a planar, chirped, blazed PU replica grating that was
fabricated by molding against the PDMS master
while it was compressed asymmetrically. The fact
that the two ends of the blazed grating seem to have
different orientations for the blazing is an artifact of
the orientation of the grating when the micrograph
was taken. (C) Diffraction patterns from the PDMS
master, its PU replica, and the chirped PU grating. A
He-Ne laser (wavelength A = 632.8 nm) was used.
The insets show images of the laser source and one
first-order diffraction spot, respectively.
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used to change their shape while preserving
size (Fig. 4, E and F) (11, 12). One-dimen-
sional compression changed the shape of
the microlenses from square to rhombic.
We could readily fabricate microlenses with
different geometric shapes and therefore
different focusing characteristics.

Molding-replication against a deformed
elastomeric master is a strategy for making
topologically complex structures with mi-
cropatterned surfaces: it allows the size and
shape of features present on the surface of
the master to be changed by using mechan-
ical compression, bending, stretching, or a
combination of these techniques, and gen-
erates complex structures with variable fea-
ture sizes from simple, regular structures.
The highly isotropic deformation in the
shape of relief patterns on the master per-
mits micropatterned structures to be formed
with gradients in size and shape.

We believe that this strategy will have
broad application in applied optics: the
chirped, blazed grating on a nonplanar sur-
face is a good example of a structure that
would be difficult to produce by other pro-
cedures. It may also be useful in other ap-
plications that use complex micropatterned
surfaces [for example, cell culture with an-
chorage-dependent cells (13), studies relat-
ing interfacial structure to properties such
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Fig. 4. (A) An optical photograph of the chirped,
blazed grating fabricated on a negative cylindrical
lens. (B) The SEM micrograph of this grating. (C and
D) SEMSs of a polymeric dome-shaped object and
the relief patterns on its surface. (E) The SEM image
of an array of square PU microlenses assembled on
a silver substrate with patterned hexadecanethiolate
self-assembled monolayers used as the template. (F)
The SEM of an array of rhombic PU microlenses that
was produced by molding-replication against the
PDMS master cast from the PU structure of (E) under
one-dimensional compression along the vertical di-
rection (as indicated by arrows).



as wetting or adhesion (14), and fabrication
of microelectromechanical systems (15)
and sensors (16)].
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Cytoplasmic Tail-Dependent Localization of
CD1b Antigen-Presenting Molecules to MIICs
Masahiko Sugita, Robin M. Jackman, Elly van Donselaar,

Samuel M. Behar, Rick A. Rogers, Peter J. Peters,
Michael B. Brenner, Steven A. Porcelli*

CD1 proteins have been implicated as antigen-presenting molecules for T cell-mediated
immune responses, but their intracellular localization and trafficking remain uncharac-
terized. CD1b, a member of this family that presents microbial lipid antigens of exog-
enous origin, was found to localize to endocytic compartments that included the same
specialized subset of endosomes in which major histocompatibility complex (MHC)
class Il molecules are proposed to bind endocytosed antigens. Unlike MHC class i
molecules, which traffic to antigen-loading endosomal compartments [MHC class ||
compartments (MIICs)] primarily as a consequence of their association with the invariant
chain, localization of CD1b to these compartments was dependent on a tyrosine-based

motif in its own cytoplasmic tail.

Non-MHC encoded CD1 molecules have
been implicated as a family of B,-microglobu-
lin—associated nonpolymorphic polypeptides
that function in antigen presentation. Identi-
fication of a T cell line that recognizes my-
colic acid, a complex fatty acid from the my-
cobacterial cell wall, in a CD1b-restricted
fashion (1) and the subsequent derivation of
two other CD1b-restricted T cell lines that
recognize lipoarabinomannan from Mycobac-
terium leprae demonstrate the capability of
CD1b to present exogenously derived micro-
bial lipid antigens (2). These CD1b-restricted
lipid and glycolipid antigens appear to require
intracellular processing in acidic compart-
ments, as do peptide antigens presented by
MHC class II molecules (I, 2). Thus, it is
proposed that CD1b molecules, despite their
MHC class [-like protein structure (3), might
traffic to endocytic compartments, including
those in which MHC class 11 molecules en-
counter endocytosed antigens.

As was consistent with this hypothesis,
CD1b induced on peripheral blood monocytes
by stimulation with granulocyte-macrophage
colony-stimulating factor (GM-CSF) and in-
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terleukin-4 (IL-4) (1) was found by immuno-
fluorescence microscopy not only on the cell
surface, but also in peripherally distributed
vesicles into which Texas Red-conjugated
ovalbumin was endocytosed (Fig. 1). Double
labeling of CD1b™ monocytes with antibodies
against lysosome-associated membrane pro-
tein 1 (LAMP-1, a marker of late endosomes
and lysosomes) showed that most CD1b* en-
docytic vesicles coexpressed this protein (4).
Furthermore, most CD1b* vesicles in mono-
cytes, as well as in a CD1b-transfected human
B cell line (CIR/CD1b) (1) stained with an-
tibodies to MHC class II molecules (4). This
profile was characteristic of the recently de-
scribed MHC class II compartment (MIIC) of
specialized or “professional” antigen-present-
ing cells, which is the proposed site at which
newly synthesized MHC class 11 molecules
accumulate and acquire exogenous peptide
antigens (5-7).

Previous studies using electron microscopy
have identified MIICs morphologically as
electron-dense structures, characterized by ex-
tensive membrane invaginations producing
either a multivesicular or multilamellar ap-
pearance (5-7). Immunogold-labeled trans-
mission eléctron microscopy of ultrathin
cryosections of GM-CSF- and IL-4-stimu-
lated monocytes revealed expression of
CD1b in MHC class II-positive dense mul-
tilamellar organelles (Fig. 2A), which were -
characteristic of MIICs previously observed
in mononuclear phagocytes (8). As was
consistent with the localization of CD1b in
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