
Table 1. Phys~cal parameters used n our model. 
Values from ( I ,  15) 

a 2 d R  g U H 'lanet (1 O7 m) (hours) (m/s2) (m/s) (1 O3 m) 

Jupiter 7.1 9.9 23 50 20 
Saturn 6.0  10.7 9 300 40 
Uranus 2.6 1 7 . 2  9 300 35 
Neptune 2.5  17.9 11 300 30 

Alternating potential vorticity grad~ents 
(Fig. 1)  indicate the presence of strong zonal 
iets, as in the observat~ons: l u ~ i t e r  and Saturn , , , L 
have multiple jets and a prograde (eastward) 
equatorial xvind (Fig. 2A), whereas Uran~ls 
and Neptune have large retrograde (xest- 
ward) equatorial winds (Fig. 2B). Our shal- 
loxv-water computations (Fig. 2, C and D) 
capture the approxi~vlate number, ~vidth, and 
amplitude of the observed zonal winds for all 
four planets. Precise, quantitative agreenlent 
is neither sought nor expected, given the sim- 
pl~city of this model. The  inlportant point is 
that the values in Table 1 alone are sufficient 
to determine the gross features of the zonal 
w~nds. One feature that the nlodel seenls un- 
able to reproduce 1s the directloll of the equa- 
torial jets for Jupiter and Saturn, ~ n d ~ c a t ~ n g  
that a Inore ~ o ~ l l ~ s t i c a t e d  ~llodel is necessary 
for those two   la nets. Furthermore, our ~nodel  
predicts that more allticyclones than cyclones 
(1 3) are to be found on all four planets. This 
asylnnletry is depicted by the skenrness of the 
vorticity field (Fig. 3). The  negative bias is 
observationallv  ell established for Tuniter 

2 L 

(14) but is no; as robustly determined for the 
other ulanets. 

In  conclusion, our study strongly sug- 
gests that,  however different the Jovian 
planets may be, their characteristic banded 
appearance is a direct consequence of the 
intrinsic shallow-water dynamics they all 
share. 
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A Magnetic Signature at lo: Initial Report from 
the Galileo Magnetometer 

M. G. Kivelson, K. K. Khurana, R. J. Walker, C. T. Russell, 
J. A. Linker, D. J. Southwood, C. Polanskey 

During the inbound pass of the Galileo spacecraft, the magnetometer acquired 1 minute 
averaged measurements of the magnetic field along the trajectory as the spacecraft flew 
by lo. A field decrease, of nearly 40 percent of the background jovian field at closest 
approach to lo, was recorded. Plasma sources alone appear incapable of generating 
perturbations as large as those observed and an induced source for the observed 
moment implies an amount of free iron in the mantle much greater than expected. On 
the other hand, an intrinsic magnetic field of amplitude consistent with dynamo action 
at lo would explain the observations. It seems plausible that lo, like Earth and Mercury, 
is a magnetized solid planet. 

Jupiter's moon Io has repeatedly surpr~sed 
planetary scientists. First, 10's orbital posi- 
tion was unexpectedly found to control 
decanletr~c r a d ~ o  emission from Jup~ter 's  ion- 
osphere (1) .  Early explanations suggested 
that the e~llissions were generated by mag- 
netlc field-aligned currents l ink~ng  10 and 
Jupiter (2).  These ideas were refined and 
linked to Alfve~lic disturhances eenerated bv - 
the interact~on of the flowing plasnla of JLI-  

piter's ~llagnetosphere 1 ~ 1 t h  an  electrically 
c o n d u c t ~ ~ l g  Io (3,  4). After the discoveries of 
a large cloud of neutral sod~um surround~ne " " 

Io (5) and of a torus of ~onized sulfur encir- 
cling Jupiter at the distance of Io's orbit (ti), 
Voyager 1 found volcanic plumes distr~buted 
o n  the surface of the   noon (7). T h e  Voyager 
1 lllagnetonleter detected ~nagnetic pertur- 
bations of -5% of the ambient jovian mag- 
netic field (-1900 n T )  as it crossed Io's 
nlagnetic flux tube ahout 11 RIL> (radius of 10, 
1821 km) below Io (8), thereby confirnling 
the presence of a field-aligned current flow- 
ing several thousand kilo~lleters awav fro111 u 

the spacecraft and carrying more than 10" A 
into the jovian ionosphere. 

T h e  Galileo spacecraft flew by lo  o n  7 
December 1995; its closest approach was 
a t  17:45:58 U T  (un~versa l  t ime) a t  an  
altitude of 898 km (9 ) .  Particles and fields 
data from the  pass recorded o n  the  space- 
craft tape recorder w ~ l l  be analyzed in the  
early summer of 1996. However, survey 
data (10)  read out directly from the  mag- 
netometer's (1 1 )  internal memory were 
returned in  late Dece~nber  1995. All  three 
colllponents of the  background jovian 
f ~ e l d  measured o n  Galileo's trajectory 
through the  plasma toms followed predic- 
t io~ l s  based o n  a recent extension (12)  of 
Voyager-epoch magnetic field models ( 1  3 )  
but In the  wake of lo  ( tha t  1s do\vnstream 
in the  flow of torus plasnla corotatlng with 
Jupiter),  t he  field magnitude decreased by 
695 n T  in  a background of 1835 n T  (Fig. 
1 ) .  Per turbat~ons of the  field along the  
spacecraft's trajectory were principally an-  
tiparallel to the  nlodel jovial1 field (Fig. 
2).  T h e  field rotated slightly, but the  
b e n d ~ n g  \vas no t  \\.hat ~vould be produced 
if the  field had been pushed outward 
around Io but rather that  caused bv a field 

~ n w a r d  toward 10. Indeed, the  pel- 
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ma flows by 10 at 57 km s-'. If 10 is 
sufficiently conducting, the interaction 
drives currents through the plasma. Fol- 
lowing an earlier suggestion (14), Gold- 
reich and Lynden-Bell (2) put forward a 
model of the interaction of 10 with the 
jovian magnetosphere that formed the ba- 
sis for subsequent ideas. They assumed 
that 10's conductivity was so large that the 
material on the entire magnetic flux tube 
that threaded 10 was frozen in and was 

0 
17:00 1730 18:W 

Spacecrafl event Ume (UT) 

Fig. 1. Magnetic field components and total field 
(nT) measured by the Galileo Magnetometer on 7 
December 1995 plotted versus spacecraft event 
time in UT. The data are shown in right-handed 
System I l l  (epoch 1965) coordinates. The dashed 
curves are from the model of Khurana (12). Clos- 
est approach to lo is indicated by a vertical line. 

dragged not only through the magneto- 
sphere but also through the conducting 
ionosphere of Jupiter at the northern and 
southern feet of the tube. They also noted 
that the currents connecting to the iono- 
sphere would be carried by Alfvtn waves 
and that any internal 10 resistivity would 
modify the picture. Later work by others 
(3, 4, 15) showed that a finite 10 resis- 
tance meant that the field lines threading 
10 (and its immediate neighborhood) do 
not move precisely with 10. How effective- 
ly the field lines threading 10 move with it 
depends on the degree of matching be- 
tween the 10 resistance and the net im- 

Distance radial towards 
Jupiter (lo radii) 

Fig. 3. Reld lines for vacuum superposition of a 
uniform tield (B = -2 1835 nT) and a dipole field 
(B = -̂ RB,cosO/ff @ &BosinO/RG) centered at 
lo. Here Bo is taken as 1835 nT and R is in RI,. 
Note the bend in the tield lines in the sense oppo- 
site draping around lo. Most of the flux originating 
within lo is directly linked to ambient flux as in a 
reconnection geometry. 

A r--- Jupiter 

i- 

l. 

Background f~eld 
3 Flow d~rection I 

projected 
direction 

2 I 

-3 
500 nT 

-4 -- A- 

x (lo radii) y (lo radii) 
-1 0 1 2  3 4 

Fig. 2. Spacecraft trajectory inbound towards Jupiter in the region near lo (shaded region). The plots use 
a coordinate system referenced to the direction of corotation (along 2). The unperturbed background 
field at the center of the wake lies in the x-z plane close to -i; 9 is positive inward towards Jupiter. (A) 
shows the x-y projection and indicates the flow direction. The lines rooted along the trajectory are 
proportional to the projection of B - B,, of Fig. 1 and the scale for the field perturbations is indicated. 
Key times are given and the field data are separated by about one minute. The terminator is crossed 
close to the center of the wake, with the sunlit side corresponding to negative values of y. (B) shows the 
y-z projection of the trajectory and the perturbation field vectors. Note that the trajectory passes 
principally below lo's equator in this coordinate system. 

pedance of the current-carrying Alfvtn 
waves. Normally impedances will not 
match and there will be slippage. 

Neubauer suggested that 10 could be 
magnetized by an internal dynamo (16). 
Kivelson et- al. (17) added the suggestion 
that there might be an 10 magnetosphere. 
There are two im~ortant conseauences of 10 
magnetization for the form of the 10 plasma 
interaction. Firstlv. when the di~ole is anti- , . 
aligned with the dipole moment of Jupiter 
reconnection will link 10's internal field to 
the external jovian magnetic field. Slippage 
between 10 and the flux tubes threading it is 
still possible. Secondly, the effective size of 
the 10 flux tube is increased as flux is drawn 
into Io from the surrounding medium (Fig. 
3). 

The distinction between the " s l i ~ ~ i n e  .. - 
10 flux tube" interaction and the frozen-in 
tube need not be great. In the slipping 
case, the 10-associated perturbations are 
guided by a pair of opposed currents tilted 
at angle a = tan-' (MA), where MA is the 
local Alfvtn Mach number of the corota- 
tion flow (18). The frozen-in tube case , , 

corresponds to the limiting case where not 
only is the ambient flow stopped by the 
Alfvdn wave perturbation but also the 
field attached to 10 is tilted by precisely a. 
The attached tube is bent by the force 
associated with deflection of the corotat- 
ing plasma around it. It is important to 
note that the angle between the current 
(which flows in the Alfvtn wine) and the 

Lr- 

upstream field depends only on plasma 
properties and is independent of the 
strength of the interaction. The field per- 
turbation and the current density can vary 
with the strength of the interaction, but 
the field cannot be tilted beyond align- 
ment with the currents. Writing AB as the 
maximum transverse field perturbation in 
the Alfvdn wing one can estimate (1 6, 19) 
I/d, the current per unit length flowing 
into the conductor from above or below 

As double this current flows radially out- 
ward, across an object of 10's diameter, one 
finds the maximum current is -3 X lo6 A 
(20). A current of the magnitude inferred 
from the Voyager observations would give 
only -30% of the 695 nT perturbation 
observed by Galileo (Fig. 1). We find (21 ) 
that a current of -12 X lo6 A is needed to 
produce a perturbation at Galileo's orbit of 
the order detected. 

A magnetohydrodynamic (MHD) sim- 
ulation (22, 23) of the current-carrying 
region as a conducting, spherically sym- 
metric body of 10's dimensions produced a 
field depression similar to the actual data, 
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but its magnitude was too small (Fig. 4) .  
Larger perturbations are obtained if cur- 
rents flow not through Io or a near-surface 

sphere. Thus, the signature recorded by 
Voyager 1 as it crossed the 10 flux tube 
would have included their contr~bution. 

the AlfvCn wing is enhanced relative to 
the conducting case because the effective 
obstacle to the flow is larger than 10. The 
data depart from the model near closest 
approach; we suggest that local plasma 
structure introduces small-scale perturba- 
tions which account for the dav-night 

'z 

ionosphere but through an extended, grav- 
itationallv bound 10 ionosnhere that close- 

As argued above, the inferred total current 
was insufficient to produce the perturba- 
tion detected by Galileo (30). 

The effects of larger ionization and 
ly approaches the Galileo 'orbit. We exam- 
ined a range of MHD simulations 122) of - , , 

an unmagnetized, conducting Io and can 
reproduce the observed signature only if Io 
has a radius of 1.4 R,, (24). There is, 
however, reason to doubt that a conduct- 

- 
charge-exchange rates on the perturbation 
remain to be evaluated fullv. The Drocess 

, - 
asymmetry of the observations and that at 
less than 0.5 above the surface, con- 

is self-limiting as pickup akd chaige ex- 
change extract energy from the flow. In 
the unperturbed torus plasma, the thermal 
energy is smaller than the flow kinetic 
energy, but when the flow slorvs, new ions 
may acquire thermal energy below the am- 
bient temperature and cool the plasma. 
Thus pickup current density and the plas- 
ma oressure can either increase or decrease 

LL, 

ductivity irregularities and higher order 
multi~oles mav also be im~or tant .  

ing ionosphere, gravitationally or colli- 
sionally bound to 10, exists at high alti- 
tude. Currents flow where ion-neutral col- 
lisions satisfy Cli = u, = nnov with Cl,, the 
ion gyrofrequency and el,, the ion-neutral 
collision frequency expressed in terms of 
n,, the neutral density, a, the collision 

~ 6 e  directidn of the per;urbation is also 
that expected from an induced magnetic 
field in a paramagnetic 10. Near the pole, 
the strength of 10's field is -1.4 times the 
background jovian field. To achieve this 
enhancement of the field strength from a 
paramagnetic response would not be possi- 

as the response is nonlinear and, therefore, 
hard to wredict. 

cross section and v, the relative ion-neu- 
tral speed. Near 10, 0, = 2% sp l .  With o 
= 4 x 10-2%2 and v < 100 km s-', n,, 
> 2 X 10" 1np3, which is improbably 
large at 900 km altitude. Such densities 
are present only below -100 km in atmo- 
spheric models (25, 26). Although 10's 
ionosphere does not seem capable of pro- 
ducing the entire perturbation, it may 
contribute to the asymmetry in the geo- 
metric wake. 

Many theories ( 2 ,  3 ,  15, 27) of the Io 
interaction have focused on an ionosnher- 

ble with the magnetic susceptibilities 
(< lop3)  of typical minerals (34). However, 
free iron, especially iron just below its Curie 
point (-1000 K) ,  exhibits a strong para- 
magnetic response. Tidal forcing (35) is 
known to heat 10's interior. Assuming that 
the Curie isotherm is at 100 km depth a 
magnetic moment per unit volume p. -40 
A mp' (36) is required to account for the 
observed perturbation. If iron, with a IJ, = 
4000 A ~ n - '  were the source, the crust 
would require a volume fraction of lop2 of 
free iron, which is not consistent with the 

Finally, we consider an internally-gen- 
erated magnetic field as the source of the - 
perturbation. An  internally generated 
field is expected to align closely with the 
local field of Jupiter whether the source is 
induced magnetization or an intrinsic field 
due to remanence or a self-sustained dy- 
namo field (3  1 ). Correspondingly, 10's 
magnetic moment should be anti-aligned 
with Jupiter's (32). The fact that we do 
not see a change in the sign of the domi- 

ic closure path for currents generated in 
the magnetospheric plasma, but newly 

expected composition of 10 (37). 
The possibility of an internally generat- 

ed field at Io has been considered by a 
number of authors. Levy (31 ) points out 
that the requirements on a self-sustained 
dynamo are not stringent when a constant 
seed field acts on the body. The seed field is 
in the sense required to account for the 
observations. More recent work (38) pro- 
poses that a dynamo can develop if the 
system IS not in thermal balance or if heat 

nant component of the field places an 
umer limit of 4 X lo2' A m2 on the . L 

magnitude of the dipole moment and this 
is an unambiguous overestimate. Our 
MHD simulation of the interaction of a 
flowing plasma with a magnetized Io (33) 
gives a perturbation of the required direc- 
tion, size, and spatial scale near the wake 
center, along the Galileo orbit (Fig. 4) .  At 
1.5 R,, in the near-equatorial region, the 
field is significantly depressed. The pertur- 
bation 1s roughly double the drop that 
would be found in the absence of nlasma 

ionized ions can also produce currents 
called pickup currents (28, 29). Our MHD 
simulations with an ionization rate of lo2' 
ions sp '  falling with distance as rp3.' (and 

u 

no charge exchange) show little change in 
the signature from the case with a conduc- 

u 

tor alone because the pickup currents are 
dwarfed by the ionospheric currents. Esti- 
mates suggest that charge exchange cur- 
rents are not negligible but that they will 
not dominate unless the wrocess occurs in 
localized regions. These charge exchange 
currents augment the Alfvkn wing cur- 
rents flowing towards the jovian iono- 

effects, as the Alfvkn wing current system 
and the internal magnetic field contribute - 
in the same direction. The total current in 

Fig. 4. The data n the coordnate 250 
system described in F~gure 2 plot- 
ted versus UT (so~~d curves). AISO s 
h o w  are the results of two M H D  6 - /  ---:- 7 

: : / --".- 
models (44) along the spacecraft 
trajectory. The short dashed line -250 

250 
shows the model with flow past a 

lo 
Me. ' M~ 

Ve J 

MO 
T 

T - 
magnet~zed lo (magnet~c moment $ 

. -_ - - -- ... 
corresponding to a surface equato- 2 ..: ?, . . ' 

*., 
r~al fled of 1300 nTi. The dashed 5 

25 30 35 40 
log [Angular momentum (kg m2 s - I ) ]  

curves show the mbdel with flow 
past a conducting lo. Data - 

-1850 
17:30 17:45 18:OO 

Spacecraft event time (UT) 

Fig. 5. The scaling relation, appropriately referred 
to as Blackett's law (39), between the magnetic 
dipole moment and the rotational angular mo- 
mentum of the planets. The proposed magnetic 
moment of lo and the angular momentum (43) are 
plotted. 
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transfer in 10's mantle is chaotic Lvith large 
t l ~ ~ c t ~ l a t i o n s  of heat flow 111 time. Nonlinear 
coupling between the  orbital eccentricity 
and tidal heating can lead to an  oscillatory 
s o l ~ ~ t i o n  with a dynamo ~1~vitchi1lg o n  and 
off every few hundred lnillion vears and 
present roughly half the time. T h e  magnetic 
molllent inferred in our analys~s is of the 
order expected from d i ~ n e t ~ s l o l ~  a 1 , a l o ~ ~ m e n t s  ., 
and fits into a Blackett's law (39) scaling of 
planetary nlag~letic rnonlents (Fig. 5). 

Thus,  unless the  free Iron in  the  mantle 
of Io is rn~ lch  greater than  Lve expect or the  
plasma conditions have changed since the  
Voyager epoch (40) ,  a n  ~ n t r i n s ~ c  dynamo 
f ~ e l d  of 10 ~ v i t h  a m a g n e t ~ c  nlomellt anti-  
aligned w ~ t h  Jupiter's molllent and -10'"' 
A mZ 111 magni t~lde seems called for. T h ~ s  
corresnonds to  a field strength of -1300 
n T  a t  10's equatorla1 s~lrface in  the  absence 
of a hackground field. Reconnec t io~ l  links 
10's field to  Jupiter's and the  foot of the  10 
f l ~ ~ x  tube is expected to he a distinct re- 
gmtl in  which m ~ ~ c h  of the  power gener- 
ated by the  Io interaction is d ~ s s ~ p a t e d  in  
Jupiter's ~onosphere ,  consistent with the  
evidence of ~sola ted signatures a t  the  foot 
of 10's flux t ~ ~ h e  141 ). T h e  interaction 1~vith , , 

a magnetized 10 also pert~lrhs the  torus 
nlasma. ivhlch means that  ~nodels  111 

which plasllla currents generated near 10 
create the  decanletric arcs observed hy the  
Voyager spacecraft (42)  need not  he sig- 
nlflcantly modif~ed.  T h e  observed day- 
night asymmetry and the  small-scale irreg- 
~llarit ies in  the  10-related signature suggest 
that  c o n d ~ ~ c t ~ v i t y  inhomogenelty, higher 
order magnetic m~~l t ipo les ,  and p ~ c k ~ l p  
iolls c o n t r ~ b u t e  to. ~v i thou t  dominatine. 

0, 

t he  observed magnetlc perturbations. T h e  
recent evidence that  Io has a large, molten " ,  

iron-iron s ~ ~ l f l d e  core (43)  and that  ade- 
quate heating to  drive a dynamo field is 
present (31 ,  38 )  suggests that  the  infer- 
ence of illtrillsic dynamo action is physi- 
cally reasonable. A11 illtrillsic magnetic 
field would add 10 to  Earth and Mercury as 
the  only solid planets with c~ l r re~ l t ly  ac- 
tive internal dvnamo fields. 
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