explain why mutations that abrogate anti-
termination mediated by the HK022 put
RNA structure occur in the B’ zinc finger (9)
and why the B half-clamp in eukaryotes con-
tains a second zinc finger that (genetically)
interacts with the B’ zinc finger (16): to sta-
bilize megabase transcription.

The results of Nudler et al. do not explain
how polymerase rotates about the DNA he-
lix. Does the clamp rotate (and lock) in the
DNA major groove, and how much flexibil-
ity exists between it and other parts of poly-
merase! They also do not resolve whether an
RNA:DNA hybrid exists; RNA:DNA dis-
ruption could be required for termination
(for example, by inducing clamp opening),
but it is clear that an RNA:DNA hybrid is
not sufficient for stability. The ability of DNA
polymerase to pass through a transcription
complex from either direction appears to
require that neither the clamp nor a hybrid
is the sole determinant of stability under
all conditions; each must be disrupted at
different points to allow DNA polymerase

passage. How four known or postulated in-
teractions—the downstream DNA duplex
clamp, the RNA:DNA hybrid, single-strand-
ed RNA in the exit channel, and RNA hair-
pin—polymerase contact—conspire to modu-
late the switches between rapid and stable
elongation, pausing, and dissociation remains
a challenge for clever experimentalists.
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Two recent papers in Science (1) re-
vealed why a yeast looks like a yeast. A
small Ras-like guanosine nucleotide—
binding protein, Rholp, acts as a
morphogenetic coordinator to acti-
vate B(1—3)glucan synthase, which
makes the glucans of cell walls. A
Rholp homolog in humans, RhoA,
also has a morphogenetic role—the
regulation of actin stress fibers, which
emanate from small patches of the
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Rho Returns: Its Targets in Focal Adhesions

RhoA recruits actin stress fibers at focal adhesions.

phosphorylation by other protein ki-
nases. Such activated myosin polar-
izes actin-myosin bundles, allowing
the formation of stress fibers.

skeleton? There are strong hints
that Rholp does just that. Cortical
actin is highly organized at the bud

membrane called focal adhesions and allow the cytoskeleton to
pull against the extracellular matrix and alter cell morphology.
A report in this issue (2) reveals the detailed biochemistry of
how mammalian RhoA controls stress fibers.

When activated (by growth factors or phospholipids, for
example), RhoA is in its guanosine triphosphate—bound form and
can bind to and activate protein kinases, including Rho-kinase.
The new results show that an additional role of RhoA is to
activate myosin, albeit indirectly. The direct Rho target is a
regulatory subunit of a phosphatase that inactivates myosin by
light chain dephosphorylation. This phosphatase regulatory sub-
unit, called myosin-binding subunit (MBS), is inactive when
phosphorylated. RhoA binds to MBS and also activates Rho-
kinase to phosphorylate MBS. The result of this flurry of interac-
tions is to inhibit myosin phosphatase activity, leading to activa-
tion of myosin through a net increase in myosin light chain
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tip; Rholp colocalizes with it in yeast cells, as does an uncon-
ventional yeast myosin, Myo2p (3). Myo2p also binds yeast
calmodulin as a light chain, an interaction required for polar-
ized growth (4). Rholp may activate Myo2p, much as RhoA
activates human myosin, through the inhibition of a myosin
phosphatase that acts on phosphorylated calmodulin, the
Myo2p light chain. Yeast Rholp interfaces between protein
kinase regulation of polarized glucan synthesis and (possibly)
activation of the cytoskeleton, whereas its human homolog
RhoA polarizes regions of the actin cytoskeleton to plasma
membrane adhesion sites. Thus, this versatile multifunctional
switch is an important, conserved component in determining
cellular architecture in both yeast and mammals.
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