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Detrital Zircon Link Between Headwaters 
and Terminus of the Upper Triassic 
Chinle-Dockum Paleoriver System 

N. R. Riggs, T. M. Lehman, G. E. Gehrels, W. R. Dickinson 

New detrital-zircon geochronologic data reveal that a through-going paleoriver con- 
nected Texas with Nevada in LateTriassic time. Sandstone from the Upper Triassic Santa 
Rosa Sandstone (Dockum Group) from northwestern Texas contains a detrital zircon 
suite nearly identical to that found in western Nevada in 'the Upper Triassic Osobb 
Formation (Auld Lang Syne Group, correlative with the Chinle Formation). The Santa 
Rosa Sandstone was derived in large part from the eroded Cambrian core of the 
Amarillo-Wichita uplift, as evidenced by abundant zircons with ages of 51 5 to 525 million 
years. Other zircon grains in the sandstone are Permian, Devonian, Proterozoic, and 
Archean in age and, with the exception of the Archean grain, are also matched by the 
population in the Nevada strata. 

T h e  sources and paths of ancient river 
systems are generally traced by distinctive 
grains ( I ) ,  paleocurrents, and facies corre- 
lations, b ~ ~ t  these arguments provide no 
uniaue ties between source areas and sites of 
deposition. Distinctive clasts have been 
used with some success ( 2 ) .  but are of use ~ , ,  

only where coarse gravelly detritus is pre- 
served. It remains uncertain whether an 
ancient river can be traced successf~~lly from 
headwaters to terminus by such potentially 
ambiguous means. 

The Upper Triassic Chinle Formation of 
the Colorado Plateau is a succession of con- 
tinental deposits that originally extended 
across much of western North America (3, 
4) (Fig. I ) .  Lithologically similar and strat- 

igraphically equivalent rocks of the same 
age in the Dockum Group of eastern New 
Mexico and northwestern Texas contain 
paleocurrents that suggest transport into 
the Chinle basin, and a connection be- 
tween the two units has been proposed on 
that basis (4). We use single-zircon U-Pb 
data from the basal Dockurn Group, togeth- 
er with published data from the Chinle 
Formation and its correlatives in Nevada 
(5), to trace a through-going river system 
between Texas and Nevada in Late Triassic 
time (Fig. I) .  

The Santa Rosa Sandstone is the basal 
for~nation of the Upper Triassic Dockiln 
Group, which is widely exposed around the 
perimeter of the southern High Plains and 
is in the subsurface of west Texas and east- 

N. R. Riggs, Department of Geology, Box4099, Northern ern New Mexico (6). The Santa Rosa Sand- 
Arizona Universitv. Flaastaff. AZ 8601 1 .  USA. stone rests unconformablv on Permian 
T. M. Lehman. ~kpartment of Geosc~ences, Texas Tech rocks and locally on ~ ~ i ~ ~ ~ i ~  rocks 
Univers~ty, Lubbock, TX 79409, USA. 
G. E. Gehrels and W. R. Dlck~nson, Department of Geo- Formation (7)1 and is as 
sciences, University of Arizona, Tucson, AZ 85721, USA. much as 40 m thick. The sandstone is com- 
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monly tabular cross-stratified and parallel and locally intertongue with deltaic and 
laminated and contains beds of chert-peb- lacustrine deposits of the overlying Tecovas 
ble conglomerate in laterallv extensive. Formation. Paleocurrent data from the San- 
highly Gartzose sandstone bddies (8, 9): t? Rosa Sandstone indicate derivation of 
These features indicate de~osition in a the alluvium from the region north and east " 
sandy braided stream system (10). Santa of the present outcrop belt (I 1 ). Vertebrate 
Rosa fluvial deposits are gradational into fossils (7) and pollen (1 2) indicate that the 

Fluvial sediment 

Kilometers 

Fig. 1. Late Triassic paleogeographic map showing the proposed location of the Chinle-Dockum trunk 
river. 

Table 1. U-Pb isotopic data of the Santa Rosa Sandstone; ppm, parts per million. 

pb isotopic compositions$ Age (Ma)$ 
Grain (ppm' 

C, An, A 
Ac 
C, R 
C, R 
Y, 2:l 
Y, 2:l 
Y, 2:l 
Y, 2:l 
C-Y, 3:l 
C-Y, 3:l 
C, An, A 
C. An, A 
C; An, A 201.1 36.58 0.1 51 68 0.08759 0.0009627 1000 + 5 101 2 + 7 1038 + 10 
Pk, R 257.8 45.8 0.13937 0.07753 0.0003281 1005 2 4 1006 + 5 1010 + 6 
Pk, R 703.1 5 166.58 0.01 983 0.09021 0.00001 74 1429 + 6 1428 + 6 1425 + 4 
Pk, R 266.4 69.2 0.1461 4 0.09328 0.0002409 1400 + 6 1409 + 7 1424 2 5 
Pk, R 137.8 91.02 0.31231 0.18926 0.0001059 2657 + 11 2696 + 12 2725 + 4 

IIC, clear; An, angular; A, abraded; Ac, acicular; R, rounded; Y, yellow; 2: 1 and 3: 1,length:width; Pk, pink. tU and 
Pb concentrations have up to 25% uncertainty as a result of uncertainty in the mass of the grain. Slsotopic 
compositions are corrected for blank (5 pg) and 205/235 spike, and for 0.14 2 0.06% per mass unit fractionation, on 
the basis of replicate analysis of National Bureau of Standards Pb standards. U composition is corrected for 0.02 2 
0.04% per atomic mass unit fractionation and 1 -pg blank. Uncertainties in measured 207/206 = 0.2% to 0.4%, and 
in measured 2041206 = 0.5% to 5%. $Decay constants used: = 9.8485 X 10-lo; A238 = 1.55125 X 10-lo; 
and 2381235 = 137.88. Data reduction is from Ludwig (30). 'Radiogenic Pb; common lead correction (31) varies 
with age of zircon. 

Santa Rosa Sandstone is Late Carnian in 
age [-235 to 223 million years ago (Ma) 
(13)]. Biostratigraphic and lithologic simi- 
larities suggest that the Santa Rosa is cor- 
relative with the shin arum^ Member of the 
Chinle Formation in Arizona, and it seems 
likelv that these strata were contieuous be- " 
fore Paleogene uplift of the central Rocky 
Mountains and Neogene development of 
the Rio Grande Rift (14). 

We analyzed 17 detrital zircon grains in 
order to trace the provenance of the Santa 
Rosa Sandstone (15). These yielded six 
populations of concordant or near-concor- 
dant single-crystal ages (Table 1 and Fig. 
2A): 270 Ma (n = I), 390 Ma (n = I), 515 
to 525 Ma (n = 8), -1010 Ma (n = 4), 
1425 Ma (n = 2), and 2725 Ma (n = 1). 
We enhanced the abundance of the 515- to 
525-Ma grains by preferentially selecting 
distinctive yellow zircons for analysis. Thus, 
the number of zircons in each population 
group is not statistically representative. 

Zircon ages obtained from the Santa 
Rosa Sandstone can be readilv intemreted 
as reflecting distinct tectonic sources. The 
Santa Rosa Sandstone overlies the Permian 
Quartermaster Formation, which contains 
-270-Ma zircon-bearing ash beds (1 6), 
along an unconformity with onlapping to 
the north. Thus, erosion of the Quartermas- 
ter ash beds likely supplied zircons to the 
Santa Rosa Sandstone. Alternatively, al- 
though less likely, Permian granites in Chi- 
huahua and Coahuila, Mexico (17), may 
have contributed detritus into northward- 
flowing streams before Late Triassic rework- 
ing into the Santa Rosa. 

The source of the 390-Ma zircon is less 
certain. Devonian plutonic rocks are com- 
mon in the Appalachian orogen and were 
eroded during the Allegheny orogeny. 
Slingerland and Furlong (18) suggested that 
the alluvial wedge shed off the Appala- 
chians may have extended west of the Mis- 
sissippi Embayment. We thus suggest that 
Devonian-Carboniferous detritus of Appa- 
lachian origin was reworked into the Tri- 
assic river system, and that more such ma- 
terial may be present throughout Mesozoic 
sedimentary strata of the West and South- 
west. Other viable sources include (i) Penn- . , 
sylvanian-Permian sedimentary rocks in 
Texas that were derived in Dart from ero- 
sion of the Ouachita orogen,*which includ- 
ed exposure of Acadian metamorphic (and 
perhaps plutonic) rocks (19), and (ii) De- 
vonian igneous boulders present in Penn- 
sylvanian flysche-molasse deposits of the 
Marathon basin (20). 

The abundant 515- to 525-Ma grains 
were clearly derived from Cambrian (21) 
granitic rocks of the Amarillo-Wichita up- 
lift, as evidenced by paleocurrents in the 
Santa Rosa Sandstone and by the presence 
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of Cambrian granite bodies in the subsur- 
face. The Amarillo-Wichita uplift was ac- 
tive during the Pennsylvanian Ouachita 
orogeny, and possibly during the Late Tri- 
assic breakup of Pangaea as well. Late Pa- 
leozoic detritus shed to the south and west 
off the Amarillo-Wichita uplift into depo- 
centers north of the Dockum Basin may 
also have been reworked into the Dockum 
section. 

Zircons yielding 1010-Ma ages were 
probably derived from widespread Grenville 
basement in northern Mexico and the 
southern and southeastern United States 
(22). There is little or no indication that 
Grenville plutonic rocks were exposed in 
Texas in Triassic time, but zircons could 
have been reworked from Paleozoic strata 
derived from the primary sources. Plutons 
with ages of -1400 Ma are likewise wide- 
spread across the south-central United 
States, and derivative zircons were probably 
very common in late Paleozoic rocks in the 
area. 

U D D ~ ~  Triassic nonmarine strata of the . . 
Chinle Formation in eastern Nevada and 
correlative marine strata of the Osobb For- 
mation (Auld Lang Syne Group) in central 
Nevada (Fig. 1) were probably contiguous, 
based on the observation of a common pop- 
ulation of zircons that is distinct from those 
in any other miogeoclinal and eugeoclinal 
strata in the western Cordillera (5). This 
characteristic population includes many zir- 
cons with ages of 500 to 525 Ma that are 
identical in age and morphology to the 
Cambrian zircons in the Santa Rosa Sand- 
stone of the Dockum Group. 

The Chinle Formation near Currie, in 
eastern Nevada (Fig. I), contains conglom- 
eratic sandstone and interbedded sandstone 
and mudstone interpreted as correlative 
with the Shinarump Conglomerate and 
Petrified Forest members of the Chinle For- 
mation on the Colorado Plateau (23). The 
Osobb Formation of central Nevada is a 
shelf succession that is stratigraphically 
eauivalent to the Chinle Formation (24). . ., 
Where sampled, it consists of sandstone and 
argillite and contains some detritus (potas- 
sium feldspar and argillite rock fragments) 
that was probably transported along the 
continental shelf (5). 

The zircon population obtained from the 
Santa Rosa Sandstone is nearly identical to 
that from the Osobb Formation of central 
Nevada (Fig. 2B and Table 1). Basement 
rocks that contain zircons with ages of 1400 
to 1450 Ma are found throughout the 
southern Cordillera. The same is true for 
1000- to 1100-Ma zircons, although this 
population is not represented in Chinle 
Formation at Currie. The population with 
ages of 515 to 525 Ma ties the Nevada 
Triassic section, including the Chinle For- 

mation at Currie, to the Santa Rosa Sand- 
stone. This correlation is further s u ~ ~ o r t e d  . 
by the presence of two younger Paleozoic 
zircon populations in both formations. 

Gehrels and Dickinson (5) proposed 
that the 265-Ma and 350- to 420-Ma zir- 
cons in the Osobb Formation, which are 
missing from the Currie Chinle Formation, 
were derived from a Paleozoic Klamath- 
Sierran oceanic arc to the west. We suggest 
instead that a through-going river system 
transported the Devonian and Permian zir- 
cons from Texas. Although the percentage 
of Devonian grains is greater in the Osobb 
sample (25), their scarcity in the Santa 
Rosa sample may only reflect a bias in 
picking. 

Basement rocks that range in age from 
late Proterozoic to Cambrian crop out in 
Colorado (26) in the area of the Uncom- 
pahgre and Front Range uplifts (Fig. 1). 
Specifically, a syenite suite with U-Pb iso- 
topic age of 536 +- 4 Ma, the Pikes Peak 
complex at 1093 +- 20 Ma, and abundant 
volcanic-plutonic complexes with ages of 
1440 to 1470 Ma and 1700 to 1740 Ma (26, 
27) are similar in age to the zircon popula- 
tions of the Nevada Chinle and Osobb 
formations and must be considered as a 
source area. Other common ages of base- 
ment rocks in Colorado (for example, 1350 
Ma, 1600 to 1660 Ma, and 1760 to 1770 
Ma) are, however, not found in the Nevada 
or Texas samples. Likewise, potential Devo- 
nian and Permian source basement rocks do 
not occur in Colorado. 

The presence of zircons of identical age 
in the Texas and Nevada samples suggests 
that a transcontinental river system ex- 
tended across the southern part of the 
North American continent. Some zircon 
grains may have ultimately derived from as 
far awav as the central and eastern United 
States or in part from eastern Mexico. We 
infer that the source of the distinctive 
and abundant Cambrian zircons was the 
Amarillo-Wichita uplift near the Dockum 
depocenter, whether as a primary source or 
reworked from nearby Upper Paleozoic 
strata. Other. less common Paleozoic zir- 
cons were derived from more distant 
sources and were somewhat randomlv in- 
corporated into the river system. The pres- 
ence of Triassic grains in the Osobb and 
Currie Chinle samples indicates that mix- 
ing of other sources occurred downstream. 

Our analysis confirms a previous sugges- 
tion that a through-going river system con- 
nected Texas with the Cordilleran conti- 
nental margin across the Colorado Plateau 
(4) (Fig. 1). Detrital zircon analysis can be 
used to identify the source of material with- 
in fluvial deposits and to determine paths 
that a river system took between source and 
terminus. 

The Osobb-Lower Chinle-Santa Rosa 
Sandstone connection indicates that early 
in Late Triassic time the continental inte- 
rior was topographically low, although 
punctuated locally by relict highlands (28). 
The rising continental arc to the southwest 
of the Chinle depocenter provided a topo- 
graphic margin in that direction, but struc- 
tures related to the breakup of Pangaea had 
evidently not yet formed. The presence of 
this river precludes contemporaneous barri- 
er highlands related to the opening Gulf of 
Mexico or to Cordilleran foreland deforma- 
tion, although such barriers may have 
formed later. By late Chinle-Dockum time, 

Santa Rosa / ' Sandstone (Texas) 

A Osobb Fm. 
(central Nevada) 

Chinle Fm. 
0 (Gume, Nevada) I 
m7Pb'/l"~ 

Fig. 2. (A) Concordia diagram showing zircon 
populations in the Santa Rosa Sandstone. Error 
ellipses are shown at the 95% confidence level. 
(B). Concordia diagram comparing congruent zir- 
con populations of the Santa Rosa Sandstone 
(Dockum Group, Texas), Chinle Formation (Currie, 
Nevada), and Osobb Formation (Auld Lang Syne 
Group, Dixie Valley, Nevada). 
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paleocurrents and intraformational uncon­
formities in the rocks suggest that the inte­
grated Chinle-Dockum depositional system 
was disrupted when rift-related structures 
began to form (29). 
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Th e well-known tides induced on Earth by 
the sun and moon have had several long-
term effects over the age of Earth. Most 
notably, the transfer of angular momentum 
from Earth to the moon has resulted in an 
appreciable increase in the length of the 
day and a retreat of the moon from Earth. 
Here, we used laminated tidal sediments to 
determine tidal periods back to 900 million 
years ago. From these records, the retreat 
rate of the moon—that is, the evolution in 
time of the lunar semimajor axis—can be 
calculated. In principle, the information de­
rived from tidal rhythmites (tidalites) can 
also yield the rotational deceleration of 
Earth, the change in the length of day 
(LOD), the rate of generation of terrestrial 
tidal frictional heat, and the variation with 
time of the product of k2 and sin(28). Tid-
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alites consist of stacked sets (commonly of 
millimeter to centimeter scale) of laminat­
ed mudstone or intercalated beds of sand­
stone and mudstone; successive sets exhibit 
progressive vertical thickening and thin­
ning in response to daily changes in current 
velocities associated with tidal processes. 
Tidalites from a variety of modern set­
tings—including delta fronts, abandoned 
tidal channels, tidal flats, and estuaries— 
have been described (I). 

The most common reported tidal cy-
clicities in the rock record include daily, 
semidaily, and semimonthly periods. Semi­
monthly (neap-spring) periods reflect phase 
changes of the moon during the half-synod­
ic month and lunar declinational changes 
associated with the half-tropical month (2). 
During the synodic month, tides are higher 
when Earth, the moon, and the sun are 
nearly aligned (syzygy) and are lower when 
the radius vectors from Earth to the sun and 
moon enclose a right angle (quadrature). 
Spring tides form during syzygy (full and 
new moon), whereas neap tides form during 
quadrature (the waxing and waning phases 
of the moon) (3). Deviations from tidal 
equilibrium are always encountered in the 
tidal record (4); these deviations result from 
local tidal geometry and variable basinal 
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The tidal rhythmites in the Proterozoic Big Cottonwood Formation (Utah, United States), 
the Neoproterozoic Elatina Formation of the Flinders Range (southern Australia), and the 
Lower Pennsylvanian Pottsville Formation (Alabama, United States) and Mansfield For­
mation (Indiana, United States) indicate that the rate of retreat of the lunar orbit is d^/dt ~ 
k2 sin(28) (where £ is the Earth-moon radius vector, k2 is the tidal Love number, and 8 
is the tidal lag angle) and that this rate has been approximately constant since the late 
Precambrian. When the contribution to tidal friction from the sun is taken into account, 
these data imply that the length of the terrestrial day 900 million years ago was ~ 18 hours. 


