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Requirement for the Adapter Protein GRB2 in 
EGF Receptor Endocytosis 

Zhixiang Wang and Michael F. Moran* 

Activated epidermal growth factor (EGF) receptors induce the formation of various 
complexes of intracellular signaling proteins that are mediated by SRC homology 2 (SH2) 
and SH3 domains. The activated receptors are also rapidly internalized into the endo- 
cytotic compartment and degraded in lysosomes. EGF stimulation of canine epithelial 
cells induced a rapid and transient association of the SH3-SH2-SH3 protein GRB2 with 
dynamin, a guanosine triphosphatase that regulates endocytosis. Disruption of GRB2 
interactions by microinjection of a peptide corresponding to the GRB2 SH2 domain or 
its phosphopeptide ligand blocked EGF receptor endocytosis; other SH2 domains that 
bind EGF receptors or antibodies that neutralize RAS did not. Both activation and 
termination of EGF signaling appear to be regulated by the diverse interactions of GRB2. 

Sites of tyrosine autophosphorylation in 
activated EGF receptors (EGFRs) bind and 
thereby activate signaling proteins that 
contain phosphotyrosine (pTyr)-binding 
domains such as SH2 and PTB domains (I ). 
For example, the adapter proteins GRB2 
and SHC bind activated EGFRs and partic- 
ipate in EGF-induced activation of RAS 
(2). Concomitant with their binding to 
PTB and SH2 proteins, activated EGFRs 
interact with adaptins (3) and are internal- 
ized by way of clathrin-coated pits into the 
endocytotic compartment (4). EGFR asso- 
ciation with the adaptin AP-2 is not re- 
quired for EGFR internalization (5), but 
receptors that lack kinase activity or pTyr 
sites are poorly internalized or show abnor- 
mal intracellular trafficking (6-8). There- 
fore, EGFR substrates or EGFR-binding sig- 
naling proteins, or both, may be required for 
receptor internalization and trafficking. 
GRB2 binds to the RAS guanine nucleo- 
tide exchange factor SOS 19) and interacts 
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through its SH3 domains with polyproline 
motifs located in the COOH-terminal reg- 
ulatory region of the dynamin guanosine 
triphosphatase (GTPase) and- with other 
proteins (10). Dynamin plays an essential 
role in coated vesicle formation ( I  I )  and 
localizes at the plasma membrane around 
the neck of emerging coated pits (1 2) .  We 
now show that GRB2 is required for endo- 
cytosis of the EGFR, and demonstrate a 
transient EGF-induced association of GRB2 
with dynamin. 

EGFRs are located at the surface of 
Maden Darby canine kidney (MDCK) 
cells deprived of serum. However, 30 min 
after stimulation with EGF, the receptors 
were internalized and accumulated in peri- 
nuclear vesicles characteristic of endo- 
somes and lysosomes (Fig. 1A): When 
cells were inicroinjected (13) with a mix- 
ture of eight glutathione-S-transferase 
(GST) fusion peptides containing the 
SH2 domains of signaling proteins that 
bind activated EGFR~ [ G R B ~ ,  SHC, and 
two each from p120 RAS-GTPase-activat- 
ing protein (RAS-GAP), the p85a subunit 
of phosphatidylinositol 3-kinase (PI3K), and 
phospholipase C-yl (PLC-?I)] and then 
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stimulated with EGF, the receptors remained 
at the cell periphery (Fig. 1A). Injected cells 
were identified with the use of avidin-fluores- 
cein isothiocyanate (FITC) to detect the in- 
jected biotinylated proteins, and were viewed 
in green fluorescence. Neighboring cells that 
were not microinjected with the SH2 domain 
peptides displayed normal EGFR endocytosis, 
as did cells injected with GST or a mixture of 
the six SH2 domains from RAS-GAP, PLC- 
y l ,  and PI3K (Fig. 1A); injection of these 
same six SH2 domains individually also did 
not affect EGFR internalization (14). EGFR 
internalization is not sensitive to the PI3K 
inhibitor wortmannin (7 ) ,  and injection of 
both SH2 domains from the p85a subunit of 
PUK had no effect on EGFR internalization 
(Fig. 1A). However, PI3K may participate 
in a later stage of EGFR endocytosis, as it is 

proposed to do in trafficking of the platelet- 
derived growth factor receptor (15). 

Coinjection of the GRB2 and SHC SH2 
domains or injection of the GRBZ SH2 do- 
main alone blocked EGFR endocytosis, 
whereas the SHC SH2 domain by itself did 
not (Fig. 1, A and B). Inhibition of EGFR 
endocytosis by the GRB2 SH2 domain was 
dose-dependent, with inhibition of endocyto- 
sis apparent in -20% of injected cells at a 
concentration of 0.25 mglml and in -90% of 
injected cells at concentrations of 20.5 mgl 
ml (14). EGFR endocytosis was considered 
inhibited if the receptors remained localized 
at the cell periphery and were not associated 
with intracellular vesicles. Inhibition of 
EGFR endocytosis by the GRBZ SH2 domain 
was also apparent in Rat-2 fibroblasts (14). 

Like the GRB2 SH2 domain, the SH2 

domains of PLC-y 1, SHC, RAS-GAP, and, 
to a lesser extent, PI3K bind pTyr sites in 
activated EGFRs (2, 16). Because only the 
GRB2 SH2 domain inhibited EGFR endocy- 
tosis, we investigated the effect of injection of 
a phosphopeptide ligand for this domain. Mi- 
croinjection of a pTyr-containing peptide cor- 
responding to eight residues surrounding the 
principal binding site (pTyr1068) in activated 
EGFRs for the GRBZ SH2 domain (2) result- 
ed in inhibition of EGFR endocytosis (Fig. 
1B); the same peptide lacking the phosphate 
group had no effect. Thus, the inhibitory ef- 
fect of the phosphopeptide was probably at- 
tributable to binding of a cellular SH2 domain 
protein important for EGFR endocytosis. 

To investigate whether GRBZ participates 
in the internalization of receptors other than 
EGFR, we microinjected MDCK cells with 

B 

I Fi. 1. Inhibiton of endocytosls of EGFRs, but not that of 
transferrin receptors, after microinjection of the GRB2 SH2 
domain. (A) Effects of vanous SH2 domain peptides on 
EGFR localitlon in MDCK cells (73) Panels: (a and b) 
Cmtd ,  serum-deprived cells ~ncubated m the absence (a) 
or presence (b) of EGF. (c through 9 Ceas were injected 
before EGF treatment with a mixture of eight individual SH2 

I 
domakrs (ead-~ at 1 mq/ml) from RAS-GAP, PLC-y1 P13K, 
GRB2, and SHC (c); GST (8 ma/ml) (d); a mkture of SIX SH2 
domains (each at 1 Wml) from RASGAP, PLC-71, and 
PBK (9); or the GR82 SH2 domain (2 mg/ml) 0. Photo- 
gaphs are double exposures with EGFR IocAhhm In the 
red Ghsmel and microinwted biothyiatd SH2 domons in 
the green channel. ~ ~ f i e k i s  of view are shown. 
(B) auantmcation of inhibition of EGFR endocytos~s after 
hjecth of GST, the mixtures of eight (GAP, PLC-yl , P13K, 

C GRB2, SHC) or SIX (GAP, PLC-71, R3K) SH2 d m n s  
in (A), the SH2 domain of GRB2 or SHC (or both) 

(each at 2 Wmr), or GST together with peptides (1 00 pM) 
corsespondlng to the sequence surrounding Tyr'OBB (or 
pTyr'0Bs) h EGFR (V, Val; P, Pro; E, Glu; Y.  Tyr; I, lle; N, 
Asn; Q, Gln; S. Ser). Data are means + SE of three inde- 
~ ~ . ( C ) M D C K c e l l s w e r e ~ w i t h  
the GRB2 SH2 domain (2 Wml)  and treated with EGF, 
aft= which the injmted peptide was detected with 8vidin- 
modamhe (a); 'htemlized F I T C - M  tmsfmin is 
shown in the same Rekl of cells m the g m  channel (b). 
Magnification, x 1 50 [(A) and (C)] I 
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Fig. 2. Effects of microinjection with monoclonal antibodies to RAS on DNA synthesis and EGFR 
localization. MDCK cells were injected with monoclonal antibodies Y13-259 (A and 6) or Y13-238 (C) or 
with the GRB2 SH2 domain (D) and stimulated with EGF. DNA synthesis was then assessed by BrdU 
incorporation (red channel) (A, C, and D) (18) and EGFR endocytosis was examined (B) (13). Magnifi- 
cation, x 170. 

Fig. 3. EGF-induced association of 
dynamin and GRB2. GRB2 was im- 
munoprecipitated from soluble (s) 
and detergent-solubilized particu- 
late (p) fractions of MDCK cells that 
had been incubated under serum- 
free conditions (SF), or incubated 
with EGF at 0°C for 15 min and then 
at 37°C for 0 or 5 min, as indicated. 
The immunoprecipitates were split 
and subjected to immunoblot anal- 
ysis with antibodies to GRB2 (anti- 
GRB2) or to dynamin. The sizes of 
molecular size standards are indi- 
cated in kilodaltons. 

S O mln 5 Q rnin 5 min 
S P  S P S P  s p  s p s p  

Anti-GRB2 blot Anti-dynam~n blot 

the GRB2 SH2 domain and monitored the 
internalization of FITC-labeled transferrin. 
Although internalization of transferrin recep- 
tors, like that of EGFRs, is mediated by dy- 
namin and clathrin-coated pits and coated 
vesicles, it was not disrupted by microinjec- 
tion of the GRB2 SH2 domain (Fig. IC). 
Thus, GRB2 is not universally required for 
receptor-mediated endocytosis but, rather, 
may participate in internalization of EGFR 
and perhaps other receptor tyrosine kinases. 
Indeed, internalization of EGFRs into coated 
pits requires receptor tyrosine kinase activity 
(7), which may reflect a dependency on spe- 
cific SH2 domain-mediated interactions, 
FITC-conjugated EGF was internalized by re- 
ceptor-mediated endocytosis and concentrat- 
ed in perinuclear vesicles in MDCK cells, but 
not in cells microinjected with the GRB2 
SH2 domain (14). These data and analysis of 
EGFR localization at several time points rang- 
ing from 5 to 60 min after EGF treatment (1 4) 
indicated that receptor-mediated endocytosis 
of EGF is blocked, and not simply delayed or 
replaced by receptor recycling, in cells inject- 
ed with the GRB2 SH2 domain. 

Given the role of RAS-related GTPases in 
vesicle trafficking, and the fact that GRB2 
participates in EGF-induced activation of 
RAS, we investigated whether RAS was re- 
quired for EGFR endocytosis. Microinjection 
of the Y13-259 neutralizing monoclonal anti- 
body to RAS, but not the Y13-238 monoclo- 
nal antibody to Ras, blocks growth factor- 
induced cell proliferation ( 17). Injection of 
Y13-259, but not Y13-238, inhibited EGF- 
induced DNA synthesis in MDCK cells (18) 
(Fig. 2). However, neither Y13-259 (Fig. 2) 
nor Y13-238 (14) interrupted EGFR endocy- 
tosis in these cells. Thus, EGFR internaliza- 
tion and localization to perinuclear endo- 
somes is not dependent on RAS signaling, 
and therefore GRB2 function in endocytosis 
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is likely independent of interaction of GRB2 
with SOS. The ability of the injected GRB2 
SH2 domain to inhibit EGF-induced DNA 
synthesis (Fig. 2) may reflect disruption of the 
GRB2-mediated activation of RAS. 

To  determine whether GRB2 participates 
in EGFR endocytosis through interaction 
with dynamin, we examined the effect of 
EGF on the association of these two pro- 
teins. Equal amounts of GRB2 were recov- 
ered by imm~~noprecipi tat io  from soluble 
and particulate fractions of MDCK cells de- 
prived of serum. However, treatment of cells 
with EGF induced a redistribution of GRB2, 
such that -70% of the protein partitioned 
with the particulate fraction (Fig. 3 )  (19). 
Dynalnin was not detected in GRBZ im- 
mune cotnplexes from unstimulated cells. 
However, treatment of cells with EGF result- 
ed in association of dynatnin with GRB2 in 
the particulate, but not in the soluble, frac- 
tion (Fig. 3).  Under the experi~nental con- 
ditions used (treatment with EGF at O°C), 
the EGFR undergoes autophosphorylation, 
but receptor internalization is blocked. Sub- 
sequent incubation of the EGF-treated cells 
at 37OC for 5 ~ n i n  was accolnpanied by a 
decrease in the amount of dynalnin recov- 
ered in the GRB2 i ~ n ~ n u n e  cotnplex from the 
particulate fraction. These results detnon- 
strate a transient EGF-induced association of 
GRB2 and dyllamin, which is likely mediat- 
ed by one or both SH3 domains of GRB2. 
The observation that the GRB2-dynamin 
colnplex was restricted to the particulate 
fraction is consistent with a fi~nctional role 
for this colnplex in EGFR internalization. 

GRB2 consists of a single SH2 domain 
and two SH3 domains in the order NH2- 
SH3-SH2-SH3-COOH (20, 21 ). The 
GRB2 SH2 do~nain binds preferentially to 
pTyr groups that are two residues upstream 
of an Asn; such sequences are present in the 
EGFR cytoplasmic dolnain and SHC (2). 
The  NH2-terminal SH3 domain of GRBZ 
interacts with SOS and CBL and is impor- 
tant in RAS-dependent vulva1 develop~nent 
in Caenorhabditis elegans (21, 22). T o  con- 
firm that GRB2 itself and not simply a 
GRBZ SH2 binding site participates in 
EGFR endocytosis, and to test the hypoth- 
esis that one or both GRB2 SH3 domains 
interact with an endocytosis factor, we mi- 
croinjected truncated versions of GRB2 into 
MDCK cells. Injection of either SH3 do- 
main from GRB2 had no inhibitory effect 
on EGFR endocgtosis (Fig. 4A),  possibly 
because they lack the localization signal pro- 
vided by the SH2 domain (23). W e  antici- 
pated that injection of a GRB2 SH3 domain 
joined to the SH2 dolnain might be func- 
tional rather than inhibitory. Injection of 
the NH2-SH3-SH2 portion of GRB2 
blocked EGF-induced EGFR endocytosis. 
However, injection of a similar concentra- 

tion (verified by in vitro binding experi- 
ments) of SH2-SH3-COOH resulted in only 
partial inhibition; about half of the injected 
cells showed EGFR endocytosis (Fig. 4A). 
We interpreted this latter result to mean 
that SH2-SH3-COOH participated in 
EGFR endocytosis and did not function in a 
dolninant negative manner. Results consis- 
tent with this interpretation were obtained 
by injection of full-length GRB2 containing 
SH3 domains expected to be defective on 
the basis of mutated forms of the C. elegans 
GRBZ holnolog SEM-5 (21 ). Full-length 
GRBZ G203R (Gly203 + Arg), which cotl- 
tains wild-type NH2-SH3 and SH2 domains 
and a defective SH3-COOH domain, inhib- 
ited EGFR endocytosis to the same extent as 
the SH2 and NH2-SH3-SH2 constructs, 
presumably by displacing endogenous GRBZ 
(Fig. 4).  However, fi~ll-length GRBZ P49L 
(Pro49 Leu), which contains a defective 
NH2-SH3 dotnain joined to wild-type SH2 
and SH3-COOH domains, had no effect on 
EGFR endocytosis (Fig. 4) .  These results 
implicate the SH3-COOH dolnain of GRB2 
in EGFR endocytosis. 

Dynalnin may be subject to multiple 
forms of regulation, and GRBZ may exert 
effects in growth factor-stimulated cells. 
Through its EGF-induced association with 
RAS guanine nucleotide exchange factors 
and dynamin, GRB2 is poised to affect both 
signal transduction and receptor endocyto- 
sis. Whether these are independent or co- 
ordinated functions remains to be deter- 
mined. Our results demonstrate that SH2 
and SH3 dotnain interactions are important 
for both transmitting signals from the 
EGFR and inhibiting such signals through 
internalization of the receptor. 
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Antiviral Effect and Ex Vivo CD4+ T Cell 
Proliferation in HIV-Positive Patients 
as a Result of CD28 Costimulation 

Bruce L. Levine, Joseph D. Mosca, James L. Riley, 
Richard G. Carroll, Maryanne T. Vahey, Linda L. Jagodzinski, 

Kenneth F. Wagner, Douglas L. Mayers, Donald S. Burke, 
Owen S. Weislow, Daniel C. St. Louis, Carl H. June* 

Because stimulation of CD4+ lymphocytes leads to activation of human immunodefi- 
ciency virus-type 1 (HIV-1) replication, viral spread, and cell death, adoptive CD4+ T cell 
therapy has not been possible. When antigen and CD28 receptors on cultured T cells 
were stimulated by monoclonal antibodies (mAbs) to CD3 and CD28 that had been 
immobilized, there was an increase in the number of polyclonal CD4+ T cells from 
HIV-infected donors. Activated cells predominantly secreted cytokines associated with 
T helper cell type 1 function. The HIV-I viral load declined in the absence of antiretroviral 
agents. Moreover, CD28 stimulation of CD4+ T cells from uninfected donors rendered 
these cells highly resistant to HIV-I infection. Immobilization of CD28 mAb was crucial 
to the development of HIV resistance, as cells stimulated with soluble CD28 mAb were 
highly susceptible to HIV infection. The CD28-mediated antiviral effect occurred early in 
the viral life cycle, before HIV-1 DNA integration. These data may facilitate immune 
reconstitution and gene therapy approaches in persons with HIV infection. 

C D ~ +  T cells contain the major reservoir of 
HIV-1 in vivo ( I ,  2). The difficulties in- 
volved in inducing proliferation in vitro of 
autologous CD4+ T cells from patients with 
HIV-1 infection limit the therapeutic poten- 
tial for many approaches that involve gene 
therapy or immune reconstitution of infect- 
ed persons (3). Two obstacles attributed to 
impaired CD4+ T cell proliferation are a 
limited clonogenic potential of the unin- 
fected CD4 and CD8 cells and the activa- 
tion of HIV-1 expression and viral produc- 
tion (4). In addition to T cell receptor 
(TCR) engagement of an antigenic peptide 

bound to major histocompatibility complex 
(MHC) receptors, other costimulatory sig- 
nals are necessary for T cell activation. The 
most important of the costirnulatory signals 
identified to date is provided by the interac- 
tion of CD28 on T cells with its ligands 
CD80 and CD86 on antigen-presenting cells 
(5). Because CD28 signal transduction can 
prevent apoptosis in cultures of HIV-infect- 
ed cells and can induce expression of the 
Bcl-X, cell survival gene (6), we tested the 
hypothesis that costimulation might be lim- 
iting in cultures from HIV-infected patients. 

We cultured lymphocytes from 10 pa- 
tients with HIV-l infection ICD4 counts of 
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provides the necessary costirnulus to replace 
feeder cells (7). Figure 1 shows the growth 
curve of CD4+ T cells from an HIV-infected 
patient after stimulation by a conventional 
method [with phytohemagglutinin (PHA) 
and interleultin-2 (IL-2)] or with CD3 and 

Rockville, MD 20850, USA. CD28 mAbs in medium that did not contain 
*To whom correspondence should be addressed. antiretroviral agents. In the PHA-stimulated 

culture, the growth curve revealed an initial 
exponential expansion and a subsequent pla- 
teau phase, resulting in termination on day 
18 of the culture (Fig. 1A). This pattern was 
coillcident with increased p24 antigen pro- 
duction and with increased viral burden as 
measured by a quantitative polymerase chain 
reaction (PCR) for cellular HIV-1 gag (Fig. 
1, B to D). In contrast, when cells were 
cultured with CD3 and CD28 mAbs, expo- 
nential cell proliferation was mailltailled for 
50 days (Fig. 1A). Although there was evi- 
dence of modest viral expression early in the 
culture, as indicated by the concentration of 
p24 on day 8 (Fig. lB), viral production and 
proviral DNA decreased to undetectable 
amounts in the culture (Fig. 1, C and D). 
Similar results were obtained whether the 
starting cell population was peripheral blood 
mononuclear cells (PBMCs) or purified 
CD4+ T cells; this finding suggested that 
the enhanced cell proliferation and antivi- 
ral effects in the culture stimulated with 
CD3 and CD28 mAbs were not dependent 
on CD8+ T cells or accessory cells (Table 
2) (8). 

A quantitative PCR was used to deter- 
mine amounts of HIV-1 gag DNA and RNA 
in the cultures of lymphocytes from the 10 
HIV-positive patients (Table 1). Culture 
with CD28 mAb resulted in decreased viral 
burden in all patient-derived cells, including 
the cells cultured in the absence of antiret- 
roviral agents. HIV-1 gag proviral DNA be- 
came undetectable in six of seven cultures 
from patients that were cultured in the ab- 
sence of antiretroviral agents, and HIV-1 gag 
RNA became undetectable in five of the 
seven cultures. Culture supernatants were 
also sampled for p24 antigen at 7- to 14-day 
intervals. Antigen was not detected in 9 of 
the 10 patients; in one patient (patient 9; 
Table 1 and Fig. I ) ,  decreasing concentra- 
tions of p24 antigen with time were detect- 
ed. Virus-free CD4+ T cell proliferation also 
occurred even when CD8 cells constituted 
<1% of the cells (Table 2) (9). 

The increase in the number of CD4 cells 
was not significantly different in the pres- 
ence or absence of a combination of antiret- 
roviral agents in three patients (8). In unin- 
fected adult blood donors, the average abso- 
lute magnitude of the CD28-mediated pro- 
liferation of,ex vivo polyclonal CD4+ T cells 
is - 10" or 33 population doublings (7). The 
limits of CD4+ T cell proliferation in HIV- 
infected patients have not yet been deter- 
mined, because 7 of 10 cultures were termi- 
nated after 4 to 8 weelts of culture and cell 
proliferation remained in the exponential 
phase. However, the observed increase ap- 
peared to be substantial, with a geometric 
mean expansion of 6.7 log units in the two 
CD4+ cell cultures that were continued to 
plateau phase (Table 1). The mean percent- 
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