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Tickling Memory T Cells

Rafi Ahmed

Shortly after an organism is infected by vi-
ruses, type | interferons (IFN I, which in-
cludes IFN-o and IFN-B) are induced (1).
This rapid, nonspecific immune response is
critical in limiting the extent of viral spread
before antigen-specific responses can more
fully control the infection. Type [ interfer-
ons also augment proliferation and activa-
tion of natural killer cells, further enhancing
immune defense (2). A report by Tough etal.
in this issue shows that [FN [ has a third func-
tion; it can also assist in the generation of T
cell responses and immunologic memory (3).

Injection of mice with I[FN I or poly(I:C),
an IFN inducer, results in proliferation of
T cells. Only one subset of T cells prolifer-
ates—the CD44" T cells (increased expres-
sion of CD44 is a marker for activated and
memory T cells)—and this proliferation oc-
curs independently of signaling through the
T cell receptor (TCR). In other words, IFN 1
can tickle memory or activated T cells in an
antigen-independent manner.

The massive T cell proliferation (espe-
cially of CD8 cells) that characterizes viral
infections in vivo (4, 5) could in theory re-
sult from a number of mechanisms: antigen-
driven expansion of specific T cells, stimula-
tion of cell division by cross-reactive anti-
gens, or cytokine-mediated bystander acti-
vation (4-7). Although functional assays in-
dicate that the contribution of antigen-spe-
cific T cells is relatively low [10% or less of
the total activated T cells at the peak of the
response (4, 5, 8)], this value may be an
underestimate: Studies with TCR transgen-
ic T cells (in which it is possible to direct-
ly visualize the antigen-specific cells) show
that the transgenic T cells can expand from
less than 1% of the population to more than
50% of CD8 T cells after viral infection (9).
Thus, much of the expansion during viral
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infections may represent antigen-driven pro-
liferation of specific T cells.

The results of Tough et al. (3) implicate a
second mechanism for cell proliferation: in-
duction by IFN I cytokines. Indeed, CD8
CD44"i cells are the cell type most responsive
to IFN I (3), and it is this same T cell subset
that shows the most striking expansion dur-
ing viral infections (3-5, 8, 9). More than
80% of CD8 CD44" T cells are dividing after
either poly(I:C) injection or viral infection
(3), although overall CD8 T cell numbers do
not change substantially after poly(I:C) in-
jection (3). This is because IFN I alone re-
sults in only a single round of cell division
(only a twofold increase), in striking contrast
to the 1000- to 10,000-fold expansion of an-
tigen-specific T cells seen after viral infec-
tions (4, 5, 8, 9). Thus, after a viral infec-
tion, such as infection of mice with lympho-
cytic choriomeningitis virus, it is likely that
IFN I induces many CD8 T cells (~5 x 10¢
per mouse) to undergo a single round of divi-
sion, whereas, by antigen-driven prolifera-
tion, a few cells (~10° per mouse) undergo
multiple cell divisions (10 to 13 divisions
over a period of 5 to 7 days) so that the total
number increases to between 10and 107 (3-
5,8, 9). Does IFN I also play a role in the
antigen-driven proliferation? Possibly. Type
[ IFN has profound effects on lymphocyte
trafficking (10) and may contribute to mobi-
lization of the specific immune response.

Perhaps the most interesting implication
of the results of Tough et al. (3) is the possi-
bility that IFN I may be involved in the
maintenance of T cell memory [reviewed in
(4)]. The idea that cytokines produced dur-
ing responses to unrelated antigens can
stimulate preexisting memory T cells is not
new (7), but Tough et al. (3) provide the first
direct evidence that cytokines cause by-
stander T cell proliferation in vivo. Thus,
periodic stimulation with IFN during inter-
mittent viral infections may help to main-
tain the pool of memory T cells.

[FN-mediated bystander proliferation may
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not be obligatory for sustaining long-term T
cell memory. Nevertheless, the new results
(3) suggest a potential mechanism for main-
taining memory and underscore the hyper-
responsiveness of memory T cells to nonspe-
cific stimuli. Memory cells may also be hyper-
responsive to other cytokines and to activa-
tion of signaling through adhesion molecules
(4), as well as to signaling through the TCR
by cross-reactive antigens (6). Thus, memory
T cells can be tickled in many ways that are
independent of their specific antigens (4).
This notion is consistent with data showing
that some of the memory CD8 T cells are
cycling but that CD8 T cell memory persists
in the absence of specific antigen (4, 11).

The finding by Tough et al. (3) that IFN
[ selectively stimulates memory T cells
raises several interesting questions. Does
IFN act directly on T cells or through pro-
duction of other mediators? Do memory T
cells have higher affinity receptors for [FN
[? In addition to inducing proliferation,
does IFN I also preferentially induce an an-
tiviral state in memory T cells in vivo (a
nice protection from viruses)? Why was the
proliferative response after poly(1:C) injec-
tion seen preferentially in CD8 memory T
cells and not in CD4 memory T cells? Does
this suggest that the rules for maintaining
CD4 and CD8 T cell memory are different
(4)? Does IEN I stimulate memory T cells
and natural killer cells by similar mecha-
nisms? Is maintenance of T cell memory
impaired in IFN [-deficient mice? Future
studies will provide answers to these ques-
tions, but the present report of Tough et al.
(3), in addition to describing an interesting
property of IFN I, provides another elegant
example of how the nonspecific innate im-
mune system interacts with and shapes the
specific immune response (12).
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