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Substitution of L-Fucose by L-Galactose in Cell
Walls of Arabidopsis mur1
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An Arabidopsis thaliana mutant (mur1) has less than 2 percent of the normal amounts
of L-fucose in the primary cell walls of aerial portions of the plant. The survival of mur1
plants challenged the hypothesis that fucose is a required component of biologically
active oligosaccharides derived from cell wall xyloglucan. However, the replacement
of L-fucose (that is, 6-deoxy-L-galactose) by L-galactose does not detectably alter the
biological activity of the oligosaccharides derived from xyloglucan. Thus, essential
structural and conformational features of xyloglucan and xyloglucan-derived oligo-
saccharides are retained when L-galactose replaces L-fucose.

To date only one mutant of Arabidopsis
thaliana has been shown to affect the gly-
cosyl compositions of cell wall polysaccha-
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rides (1). Plants carrying the murl muta-
tion are more brittle than wild-type plants,
are slightly dwarfed, and have an appar-
ently normal life cycle. The scarcity of cell
wall mutants suggests that such mutations
are lethal if they eliminate sugar residues
essential for the integrity of the cell wall
or the function of cell wall-derived oligo-
saccharins (2). The murl mutation offers
an opportunity to study the effects of the
greatly reduced amounts of L-fucose (L-
Fuc) on the structure and function of the



SRR

Table 1. XG subunit composition of A. thaliana
wild-type and mur? plants (26)

Composition
) 1%)
Oligo- (mo

saccharide Structure Wild-

type mur1
XXXG E 37.6 28.2
XLXG g 5.9 2.1
XXLG E 2.2 28.2
XLLG g 2.2 24
XXFG E 20.2 0
XXJG E 0 6.5
XLFG g 31.9 0
XLJG g 0 11
Kev: < p-Glc (] B-0-Galp-(1-2)-

O poGlep(1o4- A ooXylp-(1-6)-

ﬂ o-L-Galp-(1-2)- ‘ o-L-Fucp-(1-2)-

cell wall and its derived oligosaccharins.
The primary cell walls of higher plants
typically contain cellulose, three pectic
polysaccharides, at least two hemicellulo-
ses, and often small amounts of structural
proteins (3). Fucose is a component of the
structurally unrelated pectic polysaccha-
rides rhamnogalacturonan-I and -II and
the hemicellulose xyloglucan (XG) (3).
Xyloglucan is believed to noncovalently
cross-link cellulose microfibrils and to act
as a load-bearing structure in primary cell
walls (4-6). About 75% of the 4-linked
B-D-glucosyl residues in the backbone of
the XGs of most dicotyledonous plants are
substituted at O-6 with an a-D-xylosyl
residue (6). From 20 to 30% of these
a-D-xylosyl residues are substituted (Table
1) ac O-2 with B-D-galactopyranosyl
(Galp) or a-L-Fucp-(1—2)-B-D-Galp moi-
eties (where Fucp is fucopyranosyl) (7).
We isolated and characterized XG and
its subunit oligosaccharides (8) from murl
plants. The nona- and decasaccharide sub-

TR

Fig. 1. (A) Partial 500-MHz "H-NMR spectrum of
XLJGol from A. thaliana muri showing all the
a-anomeric resonances and the H-5 resonance
of a-L-Galp. See Tables 1 and 2 and (27) for
nomenclature and chemical shift data. The
structure of XLJGol is identical to that of XLLGol
(7) except that the side chain attached to B-D-
Gilc? is extended by the addition of an a-L-Galp
residue. The "H-NMR spectrum of XLJGol differs
from that of XLLGol (7) in that it contains addi-
tional resonances due to the a-L-Galp residue.
Furthermore, the chemical shifts of the B-D-
Gal® residue bearing this a-L-Galp residue are
affected (Table 2). The H-5 protons of the a-L-
Galp residue in XLJGol [ 4.409 ppm (parts per
million)] and H-5 of the a-L-Fucp residue in XLF-
Gol (8 4.523) (7) both resonate at an unusually
high frequency, probably as a result of confor-
mationally induced deshielding. This suggests
that the replacement of a-L-Fucp with a-L-Galp
does not significantly alter the conformation of

SRR
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the oligosaccharide. (B) The positive-ion FAB mass spectrum of per-O-acetylated XLJGol (77).
The series of ions at mass-to-charge ratio (m/z) 331, 619, and 835 confirms the presence of
the triglycosyl side chain a-L-Galp-(1—2)-B-D-Galp-(1—2)-a-D-Xylp. The ions at m/z = 547 and
1339 confirm that the triglycysol side chain is not attached to either Gic® or Glce. The ion at m/z =

1455 confirms that the triglycosyl side chain is

attached to Glc?. Asterisks identify ions due to a

noncarbohydrate contaminant. The portion of the spectrum beyond 1300 is magnified X10 in

intensity.

Table 2. "H-NMR assignments for the glycosy! residues of XLLGol and XLJGol (27). The columns
labeled A3 refer to the change in chemical shift in parts per million (ppm) that occurs upon conversion of
XLLGol to XLJGol by addition of the a-L-Gal residue.

Glycosyl A AS H-2 AS

residue XLLGol XLJGol (Ppm) XLLGol XLJGol (Ppm)
a-L-Gal® _ 5.398 _ _ 3.839 -

3-D-Gal® 4,550 4653 0.094 3.618 3.771 0.153
B-D-Gal® 4,559 4551 —~0.008 3618 3614 —~0.004
a-D-Xyl 5.161 5.163 0.002 3.679 3.677 —0.002
a-D-XylP 5175 5.171 ~0.004 3.672 3668 ~0.004
a-D-Xylo 4.943 4.941 ~0.002 3.545 3.541 —0.004
B-D-Glo? 4635 4.645 0.010 3.440 3432 ~0.008
B-D-Glc® 4.545 4526 ~0019 3.419 3.423 0.004
B-D-Glo® 4535 4529 ~0.006 3.341 3.338 ~0.003

units of XG from murl plants (Table 1) do
not contain terminal «-L-Fucp residues
characteristic of the corresponding sub-
units of XG in wild-type plants (9). How-
ever, the nona- and decasaccharide sub-
units of murl plants contain an «-L-Galp-
B-D-Galp-a-D-Xylp (where Xylp is xylopy-
ranosyl) side chain in which a terminal
a-L-galactosyl residue, a sugar not other-
wise found in XGs, replaces the normal
terminal a-L-fucosyl residue (Fig. 1 and
Table 1). a-L-Galactose (Gal) is stereo-
chemically similar to «-L-Fuc and has
been found in some higher plants (10).
However, the absolute configuration (D or
L) of galactose is rarely determined. We
used a combination of fast atom bombard-
ment-mass spectrometry (FAB-MS) (11),
'H-nuclear magnetic resonance (NMR)
spectroscopy (12), and gas chromatogra-
phy (GC) analysis (13) of the trimethyl-
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silylated (+ and —)-2-butyl glycosides of
the galactosyl residues (Fig. 1 and Tables 1
and 2) to determine the structures, in-
cluding the anomeric and absolute config-
urations of the terminal galactosyl residues
of the nona- and decasaccharide subunits
of murl. The terminal a-L-Fucp residues of
the XG nona- and decasaccharides of the
wild-type A. thaliana plants are replaced in
the murl mutants by terminal «-L-Galp
residues. ’

The aerial portions of murl plants grown
in the presence of L-Fuc contain normal
amounts of L-Fuc (I). Thus, the enzyme in
murl that catalyzes the transfer of fucosyl
residues from guanosine diphosphate
(GDP)-L-Fuc to XG is not altered. The
murl mutation probably incapacitates one
of the enzymes responsible for the conver-
sion of GDP-D-mannose to GDP-L-Fuc
(14).
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L-Galactose differs from L-Fuc only by
the presence of an oxygen atom attached
to C-6. If the fucosyltransferase can use
GDP-L-Gal as a substrate, the presence of
terminal a-L-Galp residues on murl XG
can be accounted for. The possibility that
the transferase can use L-Galp as a substi-
tute for L-Fucp is made more likely by the
recent demonstration that a GDP-L-Gal,
substituted at C-6 with an eight-atom
spacer linked to either biotin or a blood
group A-active trisaccharide, is an effi-
cient substrate for a mammalian fucosyl-
transferase (15).

Enzymatic and chemical methods release
similar amounts of XG and XG oligosaccha-
rides from murl and wild-type A. thaliana
cell walls (Table 1). However, the amount
of terminal a-L-Galp in murl XG is less
than about half of the amount of a-L-Fucp
in wild-type XG (Table 1). Thus, if the
fucosyltransferase is responsible for incorpo-
rating a-L-Galp into the XG of the mutant,
then either GDP-L-Gal is a poorer substrate
for the transferase than is GDP-L-Fuc or
there is less GDP-L-Gal available in mutant
plants than there is GDP-L-Fuc in wild-type
plants.

The fucosylated XG nonasaccharide
(XXFG; see Table 1 for the corresponding
structure of each oligosaccharide referred
to with a four-letter abbreviation) inhibits
auxin-stimulated pea stem elongation (16)
and is therefore an oligosaccharin. The
terminal a-L-Fucp residue of XXFG is re-
quired for this growth inhibition (17, 18).
We tested the ability of the L-galactosyl-
containing nonasaccharide (XXJG) to in-
hibit auxin-stimulated pea stem elonga-
tion. XXJG and XXFG inhibit, at the same
concentrations and to the same extent,
auxin-stimulated pea stem elongation
(Fig. 2). Thus, XX]JG produced by murl is
an oligosaccharin; additionally, L-Gal acts
both as a functional and structural ho-

70 —0—XXJG
o
£ 60 —0— XXFG
5 50 —4— Control
= 40
2 30 _
£ 20
£ 10 1
oLk :
104 10° 102 107 100 10

Oligosaccharide concentration (ug/ml)

Fig. 2. Effect of XXJG and XXFG on 2,4-dichlo-
rophenoxyacetic acid (2,4-D)-stimulated elon-
gation of pea stem segments (28). (O) XXJG, ()
XXFG, and (A) control mixture of nonfucosylated
XG oligosaccharides isolated from tamarind
seed. Values are percentage of inhibition as de-
scribed in (718). Each value is the average of four
treatments. Error bars indicate the standard de-
viation. The value of each treatment was calcu-
lated from measurements of 10 segments. Con-
centration of 2,4-D was 5 uM.
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molog of L-Fuc in Arabidopsis XG.

The slightly smaller stature and fragil-
ity of the stems of murl plants (I) may
result from one or more of the following:
(i) a-L-Galp does not fully mimic the
function of a-L-Fucp, (ii) the lower con-
tent of XXJG and XL]G in the XG of murl
plants compared with the content of
XXFG and XLFG in the XG of the wild-
type plant, or (iii) incomplete substitution
of a-L-Fucp in other cell wall polysaccha-
rides. The results presented here provide
support for the importance of defined
structures for the biological activity of oli-
gosaccharins and the integrity and func-
tioning of the plant cell wall.
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acetone (8 2.225 ppm). Assignments for XLJGol
are based on analysis of the COSY (correlated
spectroscopy) spectrum. Assignments for XLLGol
are taken from (7). The superscripts a, b, and ¢
refer to the position of the residue relative to the
glucitol moiety [Glce—GlcP—Glca—Gicol] (7).
Specific side chain residues are indicated by using
the superscript letter of the B-D-Glcp residue to
which the side chain is attached. B-D-Gal® is the
glycosyl residue in XLJGol bearing the a-L-Gal res-
idue at O-2. The a-L-Galp resonances not listed in
Table 2 were assigned as follows: H-3 at 8 3.890,
H-4 at § 3.998, H-5 at § 4.409, and H-6/H-6" at &
3.767 ppm.

Jojoba seeds are a rich source of XGs (25), particu-
larly of XXJG. Therefore, the XXJG used in the bio-
assay was isolated from jojoba seeds. Jojoba seeds
were milled and the resulting powder defatted with
hexanes (40 g of powder suspended in 500 ml of
hexanes for 15 hours). The defatted powder was
washed with deionized H,O by centrifugation. XG
was extracted from the washed powder with 4 M
KOH, and oligosaccharide subunits were generated
and purified from the neutral fraction (9). The pea
stem elongation assay was performed essentially as
described (718), except stems were taken from seed-
lings after onset of development of the 3rd node (in
preparation). .
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