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tions that cause cell size to increase than
those that cause it to decrease.

These questions notwithstanding, our
data clearly demonstrate a pattern of punc-
tuated evolution for a quantitative morpho-
logical character. Moreover, this pattern
arose in a simple experimental system with-
out any population subdivision (which pro-
motes cladogenesis), and the punctuated
changes were largely (if not entirely) caused
by the successive fixation of several benefi-
cial mutations. Millions of mutations oc-
curred during these thousands of genera-
tions (9), but evidently beneficial muta-
tions of large effect were quite rare (16).
The experimental population was strictly
asexual, which may have increased our abil-
ity to resolve punctuated changes. Howev-
er, any difference between sexual and asex-
ual populations with respect to the dynam-
ics of adaptive evolution (17) breaks down
when two conditions are met: (i) standing
genetic variation for fitness is exhausted, as
will eventually happen in any constant en-
vironment (18), and (ii) beneficial muta-
tions are so rare that they occur as isolated
events (11, 17). To the extent that these
conditions are fulfilled in nature, then the
selective sweep of beneficial alleles through
a population might explain some cases of
punctuated evolution in the fossil record. In
any case, our experiment shows that punc-
tuated evolution can occur in bacterial pop-
ulations as a consequence of the two most
elementary population genetic processes:
mutation and natural selection.
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Aberrant B Cell Development and Immune Response
in Mice with a Compromised BCR Complex

Raul M. Torres,*t Heinrich Flaswinkel, Michael Reth,
Klaus Rajewsky

The immunoglobulin a (Ig-a)-lg-B heterodimer is the signaling component of the antigen
receptor complex on B cells (BCR) and B cell progenitors (pre-BCR). A mouse mutant
that lacks most of the Ig-a cytoplasmic tail exhibits only a small impairment in early B
cell development but a severe block in the generation of the peripheral B cell pool,
revealing a checkpoint in B cell maturation that ensures the expression of a functional
BCR on mature B cells. B cells that do develop demonstrate a differential dependence
on Ig-a signaling in antibody responses such that a signaling-competent Ig-a appears
to be critical for the response to T-independent, but not T-dependent, antigens.

Surface expression of, and signaling by, Ig
on B lymphocytes is dependent on both
[g-a and Ig-B (1-5). The signaling capacity
of these two molecules, which are expressed
as heterodimers in the pre-BCR and BCR
(2-5), has been attributed to the presence
of an immunoreceptor tyrosine-based acti-
vation motif (ITAM) within both intracel-
lular domains (6). Indeed, BCR signaling is
severely compromised when the Ig-o ITAM
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is mutated or deleted in a myeloma cell line
(3). In the presence of wild-type Ig-B, the
extracellular and transmembrane domains
of Ig-a are sufficient for surface Ig expres-
sion (3). Thus, by truncation of the Ig-a
cytoplasmic tail, a mouse mutant can be
generated that retains B cell surface Ig ex-
pression (Fig. 1) but is compromised in Ig-a
signaling (3, 7), allowing the identification
of a point or points at which a pre-BCR or
BCR signal is critical for B cell develop-
ment or function (or both).

Homologous recombination in embryon-
ic stem (ES) cells (8) resulted in an ES cell
line (EA6) in which a stop codon was intro-
duced in exon four of mb-1 (Fig. 1A). The
mutated locus (mb-12<2¢) encodes a truncat-
ed Ig-a molecule whose cytoplasmic tail
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consists of 21 instead of 61 amino acids and  press a 1-kb mb-1 transcript (Fig. 1B). More-

lacks the ITAM (9). Wild-type and homozy-

gous mutant B220" bone marrow cells ex-
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Fig. 1. Generation and
identification of mb-14c/4¢
mice. (A) Genomic mb-1
locus (top) (32), targeting
construct (middle), and
targeted locus (bottom).
Homologous recombina-
tion introduces a loxP-
flanked neo” gene 3" of
the mb-1 gene that is re-
moved in ES cells by Cre-
mediated recombination.
The stop codon ( TGA) in-
troduced at amino acid
181 in the targeted allele
is shown (32). Exons are
indicated as black boxes,
loxP sites as filled tri-
angles, and selectable
genes as arrows. E, Eco
Rl. The cDNA probe is
represented as stippled
boxes. (B) (Left) Southern
(DNA) analysis of wild-

type, heterozygous, and homozygous C57BL/6 littermates. Eco Rl di-
gestion of C57BL/6 genomic DNA yields restriction fragments of 6.4 and
9.2 kb when hybridized with a 392-base pair Pvu Il cDNA mb-1 probe
[the 2.5-kb fragment is found in all animals and arises from cross-hybrid-
ization with an mb-1 pseudogene (32, 33)]. In the targeted locus, the loxP

site remaining after deletion of the neo” gene introduces an Eco Rl restric-
tion site, resulting in the loss of the 9.2-kb wild-type restriction fragment
and the gain of a 1.6-kb fragment. (Right) Northern (RNA) analysis of bone marrow B220* cells from
wild-type (+/+) and mb-14%/¢ animals (Ac/c). Hybridization with mb-1 cDNA reveals a 1-kb transcript in
both animals. (C) Histogram of IgM expression levels on wild-type (thin line) and mb-12</3¢ (bold line)
splenic B cells shows equivalent levels of surface IgM expression.

Fig. 2. Representative flow cytometric analyses of bone
marrow B cell development in 9- to 13-week-old wild-type
(+/+) and mb-14¢/2¢ (Ac/Ac) mice. Percentages of gated
cells within the B220+ population are indicated. (A) B220
versus CD43 surface expression of IgM~ cells. Pro-B cells
are B220'°/CD43* and pre-B cells are B220'°/CD43~ (11).
(B) B220 versus IgM expression defines newly generated
(B220°/IgM*) and mature recirculating (B220"/IgM*) B
cells. (C) Expression and percentages of IgM?2 versus IgMP
allotypes by IgM* bone marrow cells from mb-14</A¢ mice.
(D) Intracellular staining of bone marrow lymphoid cells.
(Top) Cytoplasmic p heavy chain expression within the
B220*/CD43* gate. (Bottom) Intracellular k light chain ex-
pression in B220'°/CD43~ cells. Histograms for control ani-
mals are shaded and for mutants outlined in bold. Differenc-
es in cell number reflect the proportion of cells within a given
gate (Table 1). The percentage positive cells in control and
mutants are, respectively, 18 versus 23% for cytoplasmic
in B220*/CD43* cells and 47 versus 44% for cytoplasmic k
in B220'°/CD43~ cells. (E) Control and mutant splenic B cells
exhibit equivalent BrdU incorporation after 3 days as deter-
mined by IgM versus BrdU staining (79). Percentages are for
BrdU*/IgM* splenocytes. Each dot plot represents 50,000
events.
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express surface IgM at equivalent levels com-
pared with expression in wild-type animals
(Figs. 1C, 2E, and 3). These results indicate
that mb-12</2< B lineage cells express a trun-
cated Ig-a molecule that associates with Ig-8
and allows Ig transport to the cell surface.

Flow cytometric analysis of bone mar-
row (10) revealed a small increase in the
number and proportion of the mb-144¢
pro-B  (B220"°/CD43*) cell population
compared with that of controls (Fig. 2ZA
and Table 1). However, the pro-B cell
subpopulations, defined by heat-stable an-
tigen and BP-1 expression (I11), were
present in similar proportions in mb-149A¢
and control mice (12). In contrast, pre-B
(B220°/CD43~/IgM~) and immature B
(B220°/CD43~/IgM ™) cells were present
but diminished in mb-1292¢ mice by a
factor of 2 to 4 compared with the wild
type (Fig. 2, A and B, and Table 1). The
B220°/CD43~ cells did not differ from
controls in cell size distribution (deter-
mined by forward scatter) or up-regulation
of CD25 expression (12).

Studies in previously characterized B
cell-deficient mutants have demonstrated
that progenitor B cells must express a func-
tional membrane-bound pre-BCR for the
pro- to pre-B cell transition to occur (13,
14). The development of pre-B cells from
the pro-B compartment of mb-149A¢ mice
implies that mutant pro-B cells assemble a
pre-BCR that can signal this step, although
less efficiently than the wild-type receptor.

Upon the assembly and expression of a
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functional Ig heavy chain gene, B cells ar-
rest further rearrangement at the remaining
allele in a process termed allelic exclusion.
The signal that mediates allelic exclusion
has also been attributed to the pre-BCR
(15). The absence of cells coexpressing u?
and b allotypes demonstrated that allelic
exclusion is intact in mb-149A¢ B cells (Fig.
2C). The wild-type Ig-B chain of the mu-
tant B cells is likely sufficient to mediate
allelic exclusion, as well as pre-B cell gen-
eration, at reduced efficiency (16).

Ig heavy and k light chain rearrange-
ments were apparently undisturbed by the
Ig-o mutation. We find comparable levels
of cytoplasmic p heavy chain expression in
B220*/CD43* cells and equivalent intra-
cellular k light chain expression in B220'/
CD43~ cells from mutant and control ani-
mals (Fig. 2D).

The marked reduction of a B220M/
IgM™* mature B cell population in mb-144¢
bone marrow and peripheral lymphoid
compartments (Figs. 2B and 3 and Table
1) identified the most severe consequence
of the Ig-a truncation for B cell develop-
ment, namely, a decrease in the size of the
long-lived mature B cell pool. mb-14Ac B
cell numbers in the spleen were typically
reduced to 1% of their value in controls
(range, 0.3 to 2.5%; 0.2 to 1 X 10° versus
4 to 6 X 106 cells per spleen), representing
1 to 4% of splenic, lymph node, blood, and
peritoneal cells (Fig. 3) (12). The latter
finding implies that generation of the B-1
subpopulation of B cells, which express
low levels of the CD5 antigen and occur at

++ Ac/Ac

a high frequency in the peritoneum of
normal mice (17), is also dependent on an
intact Ig-a signaling chain.

Investigation of the population dynam-
ics in B cell development has indicated
that the daily production of B cells in the
bone marrow far exceeds the number of
newly generated B cells that are selected
into the mature peripheral B cell popula-
tion (18). In mb-1292¢ mice, the newly
generated B cell compartment in the bone
marrow is reduced to between one-quarter
and one-third of the value in controls,
whereas the mature peripheral B cell pool
is diminished to ~1% of the control value
(Figs. 2B and 3 and Table 1). Thus, there
is a decrease in the size of the mutant
peripheral B cell pool far exceeding the
value expected from the reduction of the
compartment of newly generated B cells.
This result could be explained by a smaller
fraction of newly formed B cells emigrat-
ing from the bone marrow or by a short-
ened half-life of mature B cells.

To discriminate between these two pos-
sibilities, we examined the in vivo incor-
poration of  5-bromo-2-deoxyuridine
(BrdU) by B lineage cells (19). The per-
centage of bone marrow B220™" cells that
were labeled with BrdU was similar in
control and mutant (19), suggesting that
the kinetics of progenitor B cell matura-
tion to the immature B cell stage was
normal. Furthermore, BrdU incorporation
in mb-14/4¢ splenic B cells and in wild-
type cells occurred at equivalent frequen-
cies (Fig. 2E) after 72 hours of continuous

102 10 104109 10
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labeling (10.7 = 1.4% versus 10.6 =+
2.1%, n = 6). Because there is negligible
proliferation as small pre-B cells develop
to mature B cells, these results suggest that
the fraction of newly generated mb-]2/A¢
B cells emigrating from the bone marrow
to the periphery is reduced compared with
that of wild-type animals. Although the
basis for the selection of short-lived IgM*
cells into the pool of long-lived peripheral
B cells is not clear (20), these data indi-
cate that newly formed IgM™ cells require
an [g-a—mediated signal or signals to es-
tablish the pool of mature B cells.

The 3-day BrdU labeling period is insuf-
ficient to detect a reduction in the average
lifespan of long-lived B cells, which would
ultimately affect the accumulation of pe-
ripheral B cells in adult animals. Indeed,
mb-12/4¢ B cell numbers do not increase
with age (12). In contrast, the A5T mouse
mutant, despite inefficient B cell develop-
ment, accumulates a sizable peripheral B
cell compartment with time (13). This
finding suggests that not only the genera-
tion, but also the maintenance, of periph-
eral B cells is affected by the mb-149/A¢
mutation, possibly as a result of increased
apoptotic cell death.

Histologically, mb-14</A< B cells were de-
tected in the spleen as small clusters adja-
cent to relatively large T cell zones (Fig.
3B) (21). These mutant B cells displayed a
mature phenotype similar to that of con-
trols as indicated by surface expression of
IgM versus IgD, CD22, CD86 (B7.2),
CD23, and major histocompatibility com-

Fig. 3. Phenotype of peripheral lymphocytes from wild-type (+/+) and mb-13¢/a¢
(Ac/Ac) littermates. (A) Splenocyte surface expression of IgM and CD3. (B) Histo-
logical splenic sections from wild-type or mutant animals stained with anti-lgM and
counterstained with hematoxylin. IgM-positive cells are stained red (arrow), and the
dark hematoxylin staining reveals T cell zones as indicated by anti-CD4 staining of
serial sections (72). Magnification, xX200. (C) Representative flow cytometric pro-
files of peripheral splenic wild-type and mb-14%/¢ B cells. IgM versus IgD (top) or
CD22 (bottom) are shown. Ten times more events were collected from mb-13¢/a¢
than from wild-type splenocytes to enhance the distribution of expression.



R AR R e

i Adhda

plex (MHC) class II (Figs. 3 and 4) (12).
The distribution of Ig isotypes in the sera of
mb-122¢ mice was similar to that in wild-
type mice, demonstrating that a functional
Ig-a is not essential for Ig class switch re-
combination. However, the concentrations
of serum Ig were generally reduced to be-
tween 10 and 25% of the value in control
mice (12).

Antigens that elicit an antibody re-
sponse can be classified according to their
dependence or independence on MHC
class [I-restricted T cell help. The ability
of mb-124¢ B cells to mount an antibody
response to both types of antigens was
investigated (22). mb-12/A¢ mice generat-
ed a hapten-specific response to the T-
dependent (TD) antigen, 4-hydroxy-3-ni-
trophenylacetyl coupled to chicken vy-glob-
ulin (NP-CG) (Fig. 4A), that was reduced to
~1% of the value in control animals. Given
the average reduction in mb-124¢ B cell
numbers by a factor of 100, this level of
response would be expected in the presence
of saturating T cell help (23). That mb-14/4¢
B cells interact productively with T cells

was supported by the finding that mutant B
cells were able to up-regulate MHC class 11
(12) and CD86 in vitro upon antibody to
immunoglobulin (anti-Ig) treatment (24)
to levels similar to those seen in the con-
trols (Fig. 4C). This result would be consis-
tent with data showing that the cytoplasmic
tails of Ig-a and Ig-B, expressed in the
context of fusion proteins, can facilitate
antigen presentation in vitro, even in the
absence of signaling by the Ig-B ITAM
(25).

In contrast to the TD response, mb-
mice did not mount a measurable response
(26) to an optimal dose (27) of the T-
independent (TI) type 2 antigen, NP-Fi-
coll, at 7, 10, or 14 days after immuniza-
tion (Fig. 4B) (12). Responses to TI type 2
antigens are thought to rely on extensive
surface Ig cross-linking (28). The present
data support this concept in that an un-
compromised signal through the BCR
(generated presumably through receptor
cross-linking by a large multivalent anti-
gen) appears to be required for the TI type
2 response.

1 Ac/Ac

Table 1. Bone marrow B cell populations in control and mb-14¢/4¢ Jittermates. Total nucleated cells
were counted from two femurs, and B cell numbers were calculated on the basis of flow cytometric
analysis. Pro-B cells (B220*/CD43 "), pre-B cells (B220'°/CD43~/sIgM ™), immature B cells (B220'°/
CD437/slgM™), and mature B (B220"/CD43~/slgM*). Numbers are multiplied by 10~°.

Geno- Total Lympho- . . i Immature Mature
type cells cytes (%) B220 Pro-B Pre-B B B
Ac/Ac 5 21.0 251 1.95 0.75 0.80 0.33 0.07

+ 5.0 +5.9 +1.1 +0.20 + 0.50 +0.18 +0.07
+/+ 7 25.5 31.8 4.81 0.44 1.88 1.28 0.91
+ 3.9 + 4.5 +1.32 +0.19 +0.34 +0.57 +0.20
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Fig. 4. Immune response of C57BL/6 wild-type (O)
and C57BL/6 mb-14¢/Ac (@) littermates to TD and

Tl type 2 antigens (22). Bars indicate geometric
means. (A) IgG1 and \ antibody response measured
0 and 14 days after immunization with 100 pg
of NP-CG. (B) NP-specific IgG3 and X\ antibody
measured O and 10 days after NP-Ficoll (10 ng)
immunization. The hapten-specific NP primary re-
sponse is dominated by \1-bearing antibodies, and
the Tl type 2 response to NP-Ficoll is derived pre-
dominantly from conventional B cells (34). (C) Ex-
pression of CD86 on control (open) and mutant
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(shaded) B220* splenocytes (24) before (stippled) or after anti-IgM (1 wg/ml) overnight stimulation.

SCIENCE e« VOL. 272 « 21 JUNE 1996

mb-12¢/2¢ B cell development and func-
tion resembles that of the X-linked immu-
nodeficiencies in humans and mice result-
ing from mutations of Btk tyrosine kinase,
XLA and xid, respectively (29). This find-
ing is in accord with the view that the Btk
signal transduction pathway originates at
the BCR (30) and suggests that the func-
tion of Btk is dependent on the Ig-a
ITAM. Interestingly, ~10% of X-linked
agammaglobulinemia (XLA) patients are
females who exhibit a random pattern of
chromosome X inactivation, suggesting
that a distinct autosomal defect is respon-
sible for the immunodeficiency in these
patients (31). Mutations in mb-1 that dis-
rupt the link between the antigen receptor
and Btk may be responsible for some cases
of atypical XLA.
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Substitution of L-Fucose by L-Galactose in Cell
Walls of Arabidopsis mur1
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An Arabidopsis thaliana mutant (mur1) has less than 2 percent of the normal amounts
of L-fucose in the primary cell walls of aerial portions of the plant. The survival of mur1
plants challenged the hypothesis that fucose is a required component of biologically
active oligosaccharides derived from cell wall xyloglucan. However, the replacement
of L-fucose (that is, 6-deoxy-L-galactose) by L-galactose does not detectably alter the
biological activity of the oligosaccharides derived from xyloglucan. Thus, essential
structural and conformational features of xyloglucan and xyloglucan-derived oligo-
saccharides are retained when L-galactose replaces L-fucose.

To date only one mutant of Arabidopsis
thaliana has been shown to affect the gly-
cosyl compositions of cell wall polysaccha-
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rides (1). Plants carrying the murl muta-
tion are more brittle than wild-type plants,
are slightly dwarfed, and have an appar-
ently normal life cycle. The scarcity of cell
wall mutants suggests that such mutations
are lethal if they eliminate sugar residues
essential for the integrity of the cell wall
or the function of cell wall-derived oligo-
saccharins (2). The murl mutation offers
an opportunity to study the effects of the
greatly reduced amounts of L-fucose (L-
Fuc) on the structure and function of the





