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any added salt (Fig. 4B), and for PS(240)-b-
PEO(45) with 1.6 mM KF (R = 0.10). In the
PS-b-PAA system, the thicknesses of both
the inside and outside walls of the aggregates
are uniform and equal. Their structure bears
some resemblance to that of aggregated soap
bubbles, and their outer surface must be hy-
drophilic because of the presence of the short
PAA chains. The LCVs are irregular in
shape in Fig. 1D but are more nearly spher-
ical in Fig. 4. These differences may be due
to the polydispersity of the primary vesicles
and the softness of the wall, as well as the
surface energy and the shear conditions un-
der which the LCVs were formed. The LCVs
are subject to settling due to gravity but are
stable and do not coalesce at room temper-
ature. They can also be resuspended after
settling. This aggregation process may pro-
vide an easy way to trap chemicals or drugs
and then isolate them from the solution.

The self-assembly of vesicles has become a
topic of current interest (7). Chemical species
(that is, bisphospholipids) were incorporated
into the vesicle walls to aid aggregation of
these species into higher order (multivesicu-
lar) structures. As shown here, LCVs can be
formed spontaneously under various condi-
tions. They are thus a normal aggregate mor-
phology. These higher order structures might
be of interest in the development of methods
for processing artificial tissuelike composites
and soft biomaterials (7). In addition, the
application of these structures in controlled
drug delivery is a distinct possibility because
the multiple concentric layers could provide a
convenient timing mechanism.

The aggregate morphology of small-mol-
ecule amphiphiles can be changed by added
salt (8), but much higher salt concentra-
tions are needed (usually =10~! M) com-
pared with those in the present system
(107* M for CaCl, or 1072 M for NaCl).
Changing the salt or acid content has a
parallel effect on the morphology, as does
changing the copolymer composition (2,
3). Thus, the morphological changes appear
to be a result of a gradual decrease in repul-
sion among the corona chains as the con-
centration of added ions increases. Both
steric and electrostatic repulsions are in-
volved among the partially ionized PAA
chains (9). The addition of the strong acid,
HCI, protonates the ionized carboxylic acid
groups and shifts the PAA to a lower degree
of ionization; as a result, the overall repul-
sion among the PAA chains is decreased.

At the onset of the morphological transi-
tion from spheres to vesicles for PS(410)-b-
PAA(25), the CaCl, concentration is equiv-
alent to 2.3 Ca®* per 100 acrylic acid repeat
units; thus, two PAA blocks share one Ca?™ if
all the added Ca®" is near the PAA chains.
When the aggregates are LCVs, the number
of Ca** ions per PAA block is about 1.5.
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Thus, the morphogenic effect is believed to be
due to Ca?* binding to the carboxylic acid of
the PAA. Both inter- and intramolecular
bridging appears possible. As a result, the
effective distance between the PAA blocks is
greatly reduced, which has the same effect on
the morphology as does a decrease in block
length. The relatively weaker morphogenic
effect of added NaCl can be ascribed to both
weak Na* binding and a screened electrostat-
ic field of the charged PAA segments. The
morphological changes in PS-b-PEO are also
most likely caused by ion binding to the PEO
blocks.
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Patch-Clamp Detection of Neurotransmitters
in Capillary Electrophoresis
Owe Orwar, Kent Jardemark, Ingemar Jacobson,”

Alexander Moscho, Harvey A. Fishman, Richard H. Scheller,
Richard N. Zaref

Gamma-aminobutyrate acid, L-glutamate, and N-methyl-D-aspartate were separated by
capillary electrophoresis and detected by the use of whole-cell and outside-out patch-
clamp techniques on freshly dissociated rat olfactory interneurons. These neuroactive
compounds could be identified from their electrophoretic migration times, unitary chan-
nel conductances, and power spectra that yielded corner frequencies and mean single-
channel conductances characteristic for each of the different agonist-receptor interac-
tions. This technique has the sensitivity to observe the opening of a single ion channel
for agonists separated by capillary electrophoresis.

We describe here a general method for the
separation and detection of compounds that
trigger the opening of ligand-gated ion
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channels. In addition to detecting estab-
lished neurotransmitters and hormones, this
method can be helpful for discovering bio-
active substances and for identifying exci-
totoxins that promote receptor-mediated
neurotoxicity. We applied this method to
identify, from a three-component mixture,
v-aminobutyrate acid (GABA) and Glu,
the major inhibitory and excitatory neuro-
transmitters in the mammalian brain (I, 2),
and N-methyl-D-aspartate (NMDA), a syn-
thetic model agonist for NMDA receptors
(3). Like many biologically active com-
pounds, these compounds are difficult to
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detect in physiologic samples at low con-
centrations because they lack strong absorp-
tion features at wavelengths longer than the
water cutoff, and they are electrochemically
inactive at potentials useful for the analysis
of biological samples.

To improve the detection sensitivity for
neurotransmitter amino acids, researchers
have labeled them with highly fluorescent
molecules and have quantitated them after a
chemical separation. For many applications,
derivatization of amino acids at low concen-
trations is not possible. Also, labeling is ex-
tremely difficult in water-based solution for
N-blocked neuroactive amino acids and
dipeptides such as NMDA, N-acetyl-L-aspar-
tate, and N-acetyl-L-aspartyl-L-glutamate, as
well as for carboxylate-substituted heterocy-
clics, such as quinolinate, and kynurenate.
Other disadvantages of derivatization in-
clude a lack of selectivity, loss of sample
integrity, and extraneous dilution of the
original sample. Furthermore, traditional de-
tection schemes for chemical separations
such as fluorescence, absorbance, electro-
chemistry, mass spectrometry, and nuclear
magnetic resonance cannot be used to deter-
mine the biological activity of separated
components.

Biosensors overcome many of these chal-
lenges by identifying analytes on the basis of
their biological activity, often with high sen-
sitivity through biochemical amplification
steps such as G protein (guanine nucleotide~
binding protein) cascades or opening of ion
channels (4-6). Patch-clamp techniques are
especially promising for the detection of neu-
rotransmitters because of their (i) high sen-
sitivity, in which unitary ion channel cur-
rents elicited by one or a few ligand mole-
cules can be resolved, and (ii) high selectiv-
ity, in which different receptor—ion channel
complexes display characteristic conduc-
tance states, open and shut times, and other
features (5-7). Patch-clamp—based biosen-
sors have thus far been used only for in situ
detection of neurotransmitters (detection of
the analyte at the site of sample origin) (5,
6). When receptors that can be activated by
multiple endogenous ligands, such as the
NMDA type of glutamate receptor, are used
for in situ patch-clamp detection to study,
for example, the release of excitatory amino
acids (6), limited information about the
chemical identity of agonists is obtained in
complex mixtures (8), and an additional di-
mension for agonist identification is needed.

Shear et al. and Fishman et al. recently
coupled single-cell biosensors with capillary
electrophoresis (CE) separations in which
receptor agonists were identified on the
basis of their electrophoretic migration
times and their biological activities (9, 10).
We now report a refinement of this concept
by implementing patch-clamp detection in

1780

¥R IR Or Y

A Faraday cage
CE Head O'utput
capillary stage Signal
Patch-clamp

electrode

Microscope
objective

xyz Micro-
manipulator

Separation
capillary

\ Whole-cell
patch-clamped
neuron

A
25 um

Fig. 1. Patch-clamp detection system for CE. (A)
The inlet end (sample injection end) of a fused-
silica CE separation capillary is connected to a
positive high-voltage power supply through a
buffer vial housed in a polycarbonate holder
equipped with a safety interlock to prevent electric
shock. The capillary is grounded ~5 cm above the
outlet, which is positioned in the cell bath. The
same buffer used for the cell bath media is used as
the electrolyte in the CE capillary and inlet vial, to
avoid liquid junction potentials. The tip of the
patch-clamp electrode was positioned ~5 to 25
prm from the capillary outlet by means of a micro-
manipulator. (B) Schematic showing the approxi-
mate geometrical relation of the patch-clamp pi-
pette (here depicted in the whole-cell configura-
tion) relative to the CE separation column outlet.

CE, which provides detailed microscopic
information about the activated receptor—
ion channels, including kinetics, conduc-
tance states, and open and closed times. By
coupling this information with the electro-
phoretic mobility of the analyte, the result
is a multidimensional format for agonist
identification.

We used mammalian neurons freshly dis-
sociated from the rat olfactory bulb (11) as
biosensors. These cells are known to have
GABA,, receptors (12) and two types of
glutamate receptors: the (R,S)-a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionate
(AMPA) and NMDA types (11). To obtain
NMDA responses, the cells were kept in a
Mg?*-free, Gly-supplemented (10 pM)
Hepes-saline solution (140 mM NaCl, 5 mM
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Fig. 2. Inward currents recorded from outside-
out, patch-clamped olfactory interneurons after
separation of GABA, Glu, and NMDA by capillary
electrophoresis. (A) Separation of GABA (250 M)
and Gilu (250 pM). (B) Separation of a Hepes-
saline solution onto the same patch used in (A). (C)
Separation of GABA (250 uM), Glu (250 wM), and
NMDA (250 wM). (D) Separation of a Hepes-saline
solution. Current traces were sampled at 2 Hz to
display whole separations. The CE conditions (73)
were the same for the separations, except that
two different CE capillaries were used for the two
respective separations and their controls.

KCl, 1 mM CaCl,, 10 mM Hepes, 10 mM
glucose, pH adjusted to 7.4 with NaOH).
This buffer was used as the electrolyte in the
CE separations (13), except that Gly was left
out to avoid activation of Gly-gated ion
channels. For detection we used a standard
patch-clamp setup (14) (Fig. 1A) with the
tip of the patch-clamp electrode positioned 5
to 25 pwm from the outlet of a fused-silica CE
separation capillary (50 wm in inner diame-
ter) (Fig. 1B). The exact positioning of the
tip of the patch-clamp electrode relative to
the CE capillary outlet was not critical with
the analyte concentrations used. The cells
were held at a membrane potential of —70
mV. Because CE is carried out at high
voltages, 10 to 30 kV, and produces electric
field strengths of several hundred volts per
centimeter, the CE capillary was fractured
and grounded ~7 cm above the outlet to
create a field-free region at the position of
the patch-clamp pipette tip (13). This pro-
cedure has been shown to be successful for
high-sensitivity electrochemical detection
with carbon fiber electrodes (15) and for
two-electrode voltage clamp recordings (9).

In Fig. 2, A and C, mixed standards of
GABA and Glu, and GABA, Glu, and
NMDA, respectively, were separated and
detected with outside-out patch-clamp de-
tection. Electropherograms of Hepes-saline
controls are shown in Fig. 2, B and D. The
success rates for obtaining a receptor re-
sponse from separated agonists with whole-
cell and outside-out patch-clamp detection
configurations were ~80% (n = 10),

~60% (n = 10), and ~90% (n = 10) for
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Fig. 3. Spectral analyses of whole-cell, patch-clamp current fluctuations induced by separated excita-
tory and inhibitory amino acids on freshly dissociated rat olfactory interneurons. Mean single-channel
conductances (y, mean = SEM) and corner frequencies (f ., and  ,, mean = SEM) were estimated
from the fitted power spectra (17). (A) Power spectrum of currents elicited by GABA (250 uM) on GABA ,
receptors. Spectral analysis yielded y = 22.4 £ 3.1 pS, f, = 10.1 £ 0.8 Hz,and f , = 214.2 = 37.5
Hz (n = 6). (B) Power spectrum of NMDA and AMPA receptor currents evoked by Glu (250 uM). Spectral
analysis yieldedy = 39.2 + 3.0pS, f,; =9.8 + 0.7 Hz,and f ,, = 161.5 + 39.2 Hz (n = 8). (C) Power
spectrum of Glu-activated (250 wM) AMPA receptors (Mg?* was included in Gly-free media to inhibit
NMDA responses). Spectral analysis yielded y = 10.3 £ 2.3pS, f, = 7.0 + 21 Hz, and f ,, = 147.7
+ 42.1 Hz (n = 3). (D) Power spectrum of NMDA-activated (10 uM) NMDA receptors. Spectral analysis
vielded y =334 + 42pS§,f, =70+ 0.4 Hz andf_, = 108.0 = 7.2 Hz (n = 3). The insets show
examples of whole-cell currents elicited by the respective receptor agonists, whose onset is indicated by

the arrows.

GABA, NMDA, and Glu, respectively.
The response to GABA (100 to 250 uM)
was completely blocked by picrotoxin (300
uM, n = 7), the response to Glu (10 to 250
uM) in a Mg?*-supplemented (1 mM) Gly-
free media was completely blocked by the
AMPA receptor antagonist 6-cyano-7-ni-
troquinoxaline-2,3-dione (CNQX, 20 uM,
n = 5), and the response to NMDA (10 to
250 uM) was completely blocked by the
addition of Mg?* ions (1 mM, n = 5).

In addition to migration times and phar-
macology, the characteristics of the current
responses elicited by the separated agonists
further confirmed their identities. Spectral
analysis of whole-cell current traces of sep-
arated components gave power spectra (16)
that were fitted by the sum of two Lorent-
zian functions (17). From these fits, mean
single-channel conductances vy (in pico-
siemens) and corner frequencies f_; (in hertz)
were obtained (Fig. 3); the values of these
quantities were in close agreement with the
results of earlier studies of rat olfactory and
cerebellar neurons (11, 18).

Spectral analysis is helpful in discrimi-
nating between different receptor—ion
channel complexes in cases where a single
ligand activates a single receptor type.
When multiple agonists activate the same
receptor, however, differentiation between
the different agonists cannot be accom-
plished in general with f, and vy values
alone (19). This behavior is illustrated for
NMDA- and Glu-evoked receptor respons-
es (Fig. 3, B and D). Without pharmacolog-
ical intervention, it would be difficult, es-
pecially with membrane patches of a high
NMDA receptor density, to distinguish be-
tween these two agonists with in situ patch-
clamp detection. As shown here, this prob-
lem can be overcome by using chemical
separation before patch-clamp detection,
whereby separated components interact
with the receptors one at a time. In this
way, not only is it possible to separate mul-
tiple species in time (Fig. 2, A and C), but
it is also possible to analyze whole-cell (Fig.
3) and single-channel (see below) current
records.
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Fig. 4. Single-channel openings elicited by GABA
(250 uM) (A) and NMDA (10 uM) (B) on freshly
dissociated rat olfactory interneurons. The back-
ground noise trace in (C) is from the same record-
ing as (A) before the arrival of the agonist band.
The signals from the video tape were low-pass—
filtered (250 Hz, —3 dB, 8-pole Bessel filter) and
digitized at 500 Hz. Arrows indicate single-chan-
nel openings.

Using the outside-out patch-clamp de-
tection configuration, we could resolve sin-
gle-channel openings for all ligands separat-
ed by CE. The low-conductance states were
generally ill defined and difficult to distin-
guish, but the events with the largest am-
plitudes could be quantitated. GABA-
evoked openings were mainly at the 2.0-pA
level (Fig. 4A), which corresponds to a
mean conductance of 29.1 pS, for a reversal
potential of 0 mV. This value is in good
agreement with the 24- to 31-pS openings
reported for GABA , receptors in various
mammalian central neurons (18, 20). Oc-
casionally, multiple channel openings were
seen in GABA-evoked current responses.
The main events in NMDA- (Fig. 4B) and
Glu-evoked (21) NMDA receptor respons-
es yielded an average single-channel cur-
rent of 3.6 pA; these results correspond to a
mean conductance of 52 pS (if we assume a
reversal potential of 0 mV) and agree well
with the 50-pS channels observed for
NMDA receptor—ion channel complexes in
earlier studies (11, 22).

Potential applications of this technology
include screening orphan receptor ligands,
neurotransmitters, and excitotoxins in the
extracellular fluid of the mammalian brain.
Transfected cells expressing a single recep-
tor clone as a target for different neuroac-
tive modulators could iriprove the selectiv-
ity of these biosensors. Also, neuropeptides
that nortally operate through metabo-
tropic receptors could be detected with this
technique if the receptor clones are ex-
pressed together with ion channels that
couple to the receptor. For example, G
protein—coupled, inwardly rectifying K*
channels have been functionally expressed
for the k opioid receptor (23). Because CE
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offers high separation efficiencies (up to
~10% theoretical plates) and can be per-
formed in capillary structures capable of
handling sample volumes in the low femto-
liter range, the on-line analysis with CE
patch-clamp detection of evoked neuro-
transmitter release from biological microen-
vironments such as single cells or discrete
nerve terminal areas should be feasible be-
cause sample integrity is conserved.
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Nanoscale Magnetic Domains
in Mesoscopic Magnets
Michel Hehn, Kamel Ounadijela,* Jean-Pierre Bucher,

Francoise Rousseaux, Dominique Decanini, Bernard Bartenlian,
Claude Chappert

The basic magnetic properties of three-dimensional nanostructured materials can be
drastically different from those of a continuous film. High-resolution magnetic force
microscopy studies of magnetic submicrometer-sized cobalt dots with geometrical
dimensions comparable to the width of magnetic domains reveal a variety of intricate
domain patterns controlled by the details of the dot geometry. By changing the thickness
of the dots, the width of the geometrically constrained magnetic domains can be tuned.
Concentric rings and spirals with vortex configurations have been stabilized, with par-
ticular incidence in the magnetization reversal process as observed in the ensemble-

averaged hysteresis loops.

Mesoscopic magnets are currently being
studied for their fundamental and techno-
logical properties. These magnets are found
in several forms: as particles or patterned
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submicrometer-sized dots in close interac-
tion with a substrate (I-5) or as free atomic
clusters in beams (5, 6). Very small
monodomain Co particles (a few tens of
atoms) do ‘not show any hysteretic behavior
at room temperature (6), whereas in bigger
particles, which are relevant to high-density
data storage materials, anisotropies build up
that lock the magnetic moment in a given
direction. Interesting properties are expect-
ed as the geometrical dimensions of the
particles become comparable to character-






