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contacted by the appropriate upstream ki­
nase (MKK3 in this instance) and directing 
it to phosphorylate the residues in the T-
loop. Indeed, the a C helix of Cdk2 interacts 
with the regulatory subunit cyclin A, reori­
enting the T-loop and opening the entrance 
of the catalytic cleft (17). The a C helix 
might therefore represent a key exposed re­
gion used by protein kinases to receive input 
regulatory signals. 

By generating chimeric MAPK able to 
convert stress signals into growth factor re­
sponses, we have demonstrated that signal 
reception domains may be dissociable from 
signal delivery domains. If this model can 
be generalized to other members of the 
MAP kinase family as well as to the up­
stream kinases of the transduction cascades, 
a new class of specific "MAPK module" 
antagonists could be created by targeting 
domains specifying agonist activation. 
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system is the LuxR-LuxI system of Vibrio 
fischeri. Luxl protein produces V. fischeri au-
toinducer [VAI, N-(3-oxo-hexanoyl)-L-ho-
moserine lactone], which binds to the tran­
scriptional activator protein LuxR (3, 4). 
Complexes of LuxR-VAI activate transcrip­
tion of the lux operon, resulting in biolumi-
nescence. Because VAI diffuses passively 
across the cell envelope, high intracellular 
concentrations of VAI are attained only in 
the presence of neighboring VAI-producing 
bacteria (5). Similar regulatory systems are 
found in a broad variety of eubacteria, many 
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of which are pathogens. Each of these sys- 
tems uses an autoinducer that is com~osed of 
a homoserine lactone moiety linked to an 
acyl chain of variable length and oxidation 
state (1, 2). Among these, the TraR and 
TraI proteins of A. tutnej& (homologous 
to LuxR and LuxI, respectively) and the 
pheromone AAI [N-(3-0x0-octanoy1)-L-ho- 

moserine lactone] regulate the conjugal 
transfer genes of the tumor-inducing (Ti) 
plasmid as well as at least six genes not 
required for conjugation (6, 7). 

Expression of the related LuxI, TraI, or 
LasI proteins in Escherichia cob is sufficient 
for synthesis of the cognate autoinducers 
(3, 6, 8), an indication that these proteins 

Table 1. Requirement of S-adenosylmethionine for in vitro AAI synthesis. AAI synthesis reactions (70 pI) 
were canied out for 10 min at 22°C; each reaction contained 10 mM tris-HCI (pH 7.4), 330 mM NaCI, 
15% glycerol, 0.7 mM DTT, 2 mM EDTA, 25 mM MgSO,, 0.1 mM FeSO, and, unless otherwise 
indicated, 0.1 5 mM AdoMet (or homoserine lactone), E, coli S28 extract (final concentration, 3.5 mg of 
protein per milliliter), and 6 pg of H6-Tral per milliliter. We prepared E. coli S28 extract by culturing strain 
BL21/DE3 in LB medium at 37°C to mid-log phase, resuspending cells in TEDG buffer [lo mM tris-HCI 
(pH 8), 0.1 mM EDTA, 0.1 mM DTT, 5% glycerol] and disrupting them with a French Press minicell 
(20,000 pounds per square inch). The lysate was centrifuged for 1 hour at 28,0009, and the supernatant 
(-5 mg of protein per milliliter) was retained for AAI assays. We stopped the reactions by adding three 
volumes of ethyl acetate. The ethyl acetate phase was transferred and evaporated under vacuum at 
60°C, and the residue was resuspended in defined AT growth medium (25) that had been inoculated 
with A. tumefaciens strain A136(pCF218) (pCF372). This strain lacks a Ti  plasmid, contains a tml-lac2 
fusion, and overproduces TraR (26). After overnight incubation, we measured the p-galactosidase 
specific activity using miblog phase cultures. We obtained a standard dose-response curve, using 
synthetic racemic MI. This assay was quantitative between 0.15 nM and 5.0 nM L-MI. 

Assay components p-Galactosidase AAI production (pmol min-l 
units per microgram of He-Tral) 

Tral, S28, AdoMet 394 21.9 
S28, AdoMet < 1 <0.01 
Tral, AdoMet < 1 <0.01 
Tral, S28 < 1 <0.01 
Tral, S28, homoserine lactone 4 0.22 
S28, homoserine lactone 4 0.22 

Fig. 1. Conversion of radiolabeled AdoMet to AAI by He- soo- 
Tral. (A) Bioassay with S28 extract and H6-Tral. (B) Radio- A 
a c t i i  of each fraction of (A). (C) Radioactivity of fractions % 3 4w { 
with S28 extract in the absence of H6-Tral. (D) Synthetic 3 200- 
nonradiolabeled AAI. (E) Bioassay of reactions carried out $ o; , , , 

with Ado-Met, OOACP, and H6-Tral in adefined buffer. (F) 6oo- B 
Radioactivity of fractions of (E). (G) Radioactii of frac- 400- 
tiins from reactions in the presence of OOACP but lacking ern; 
H6-Tral. Reactions (A) through (C) contained 0.05 mM 
S-adenosyl-L-[carboxyl-14C]methionine (Amersham), 2.7 
mg of S28 extract per milliliter and 0.4 p,g of He-Tral per 
milliliter in a buffer containing 330 mM NaCI, 15% glycerol, g400: 
0.7 mM DTT, 2 mM EDTA, 25 mM MgSO,, 0.1 mM U200 

FeSO,, and 40 mM tris-HCI (pH 7.4). Reactions (E) 
through (G) contained 0.1 1 mM S-adenosyl-L-[carboxyl- . 200 
14C]methionine, 7 p,g of OOACP and 17 p,g of ACP per 
milliliter, 1.1 p,g of He-Tral per milliliter, in a buffer containing loo 
100 mM NaCI, 5% glycerol, 1 mM DTT, 2 mM EDTA, and 50 
65 mM tris-HCI (pH 7.4). Reactions were allowed to con- '2 0 

tinue for 1 hour at 22°C and were terminated by extraction 2 5 600 

with ethyl acetate. Ethyl acetate was separated and evap- 
orated. We resuspended the residue in a 50% methanol- 
water mixture and fractionated it by isocratic reversed- 
phase HPLC, using a polycyclic aromatic hydrocarbon 
Hypersil column (Keystone Scientific) and a 50% metha- 
nol-water mixture (1 ml min-I). Fractions were evaporated 8 5oo and the residue was resuspended in water for AAl bioas- 
says as described in Table 1 and for radioactivity with a 
Beckmann 5000CE scintillation counter. Background 
counts were subtracted. 

1 2 3 4 5 6  
Retention time (rnln) 

provide substrate specificity. Before this 
study almost nothing was known about the 
substrates or reaction mechanisms of these 
proteins. It has been proposed that the con- 
served homoserine lactone moiety of the 
Vibrio autoinducer VAI is derived from S- 
adenosylmethionine (AdoMet) (9) or from 
homoserine lactone (10). It has been sug- 
gested that the diverse fatty acid moieties 
are derived from different intermediates in 
fatty acid biosynthesis (1 I), although they 
could also be derived from intermediates in 
fatty acid degradation. 

To learn more about the reactions cata- 
lyzed by this family of proteins, we purified 
TraI and used it to reconstitute AAI synthesis 
in vitro. We fused the traI gene to six histi- 
dine codons, creating pJS101 (12). The E. cofi 
strain BL21/DE3(pJS101) released large 
amounts of AAI into the culture supernatant 
(13), indicating that this fusion protein was 
active in vivo. Initial attempts to synthesize 
AAI in vitro with affinity-purified hexahis- 
tidinyl-TraI (H6-TraI) (1 2) and an extract of 
soluble E. cofi proteins (S28 extract) were 
unsuccessful. However, when AdoMet was 
combined with H6-TraI and S28 extract, AAI 
was synthesized (Table 1). Synthesis required 
both H6-TraI protein and S28 extract. We did 
not detect H6-TraI-dependent AAI produc- 
tion when homoserine lactone was used in 
place of AdoMet. 

We used gel filtration chromatography 
to determine the molecular mass of H6-TraI 
under nondenaturing conditions (14). The 
sole peak of AAI-synthesizing activity elut- 
ed at 22,000 daltons. Because H6-TraI has a 
molecular mass of 25,012 daltons, we con- 
clude that this protein is monomeric. 

To provide additional evidence that 
AdoMet is a direct precursor for AAI, we 
repeated the assays described above using 
S-adenosyl-~-[carboxyl-14C]methionine and 
separated AAI from the reactants using re- 
versed-phase high-performance liquid chro- 
matography (HPLC). A peak of tra gene- 
stimulatory activity eluted between 4.25 and 
4.5 min (Fig. lA), which corresponds to the 
retention time of chemically synthesized AAI 
(Fig. ID). This bioactivity precisely coeluted 
with a peak of radioactivity (Fig. 1B). Both 
the radioactivity (Fig. 1C) and the bioactivity 
(15) were absent in a control reaction lacking 
H6-TraI. We conclude that AdoMet is a pre- 
cursor of AAI. 

To investigate the origin of the fatty acid 
moiety of AAI, we sought to identify low 
molecular weight molecules in the S28 ex- 
tract that were required for activity. Dialysis of 
the extract abolished activity (Table 2). Ac- 
tivity was restored by the addition of malonyl- 
coenzyme A (CoA) and NADPH (reduced 
form of nicotinamide adenine dinucleotide 
phosphate), two substrates in fatty acid bio- 
synthesis (16). We found that NADH (re- 
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duced form of nicotinamide adenine dinucle- 
otide) was approximately as effective as 
NADPH in supporting in vitro AAI synthe- 
sis. Acetyl-CoA did not function in place of 
malonyl-CoA and did not stimulate reactions 
containing malonyl-CoA (1 5). To our knowl- 
edge, the only known reactions in E. coli that 
require malonyl-CoA are those that occur in 
fatty acid biosynthesis. 

Further evidence that the acyl moiety of 
AAI was derived from fatty acid biosynthetic 
intermediates was provided by the use of ceru- 
lenin, an inhibitor of fatty acid biosynthesis 
(16). Cerulenin is an irreversible inhibitor of 
P-ketoacyl-acyl carrier protein (ACP) syn- 
thase I and I1 activities that acts by covalently 
binding to the fatty acyl binding sites of these 
enzymes (1 7). We treated dialyzed S28 extract 
with varying concentrations of cerulenin, re- 
moved cerulenin by dialysis, and assayed for 
AAI synthesis in the presence of H6-TraI, 
AdoMet, malonyl-CoA, and NADPH. Syn- 
thesis of AAI was 50% inhibited by treatment 
with 6.3 pM cerulenin (Fig. 2, solid line), a 
concentration six times as great as that report- 
ed to cause 50% inhibition of P-ketoacyl- 
ACP synthase I (KAS I) (18). Treatment of 
H6-TraI with cerulenin did not affect AAI 
synthesis (Fig. 2, dashed line). We conclude 
that AAI synthesis in these assays requires 
ongoing fatty acid biosynthesis. 

Because nascent fatty acids are bound to 
ACP, we hypothesized that the 3-0x0- 
octanoyl moiety might be obtained direct- 
ly from ACP. To test this hypothesis, we 
prepared 3-0x0-octanoyl-ACP using the 
reagent 3-0x0-octanoylthiocholine iodide 
(OOTC, Fig. 3A). The positive charge of 
the quaternary amine has been shown to 
facilitate the transfer of other acyl groups 
to the thiol group of CoA (19). Because 
ACP has a similar phosphopantetheine 
moiety (and no other thiol groups), we 
reasoned that OOTC might transfer its 

q 0 -4 -3 -2 -1 0 1 
log [Cerulenln (mM)] 

Fig. 2. Inhibition of AAI production caused by the 
fatty acid biosynthesis inhibitor cerulenin. Dialyzed 
S28 extract (solid line) or H6-Tral (dashed line) 
were incubated with cerulenin (Sigma) at the con- 
centrations indicated for 1 hour at 4"C, dialyzed 
overnight, and assayed for AAI production as de- 
scribed in Table 1. 

Table 2. Requirement of malonyl-CoA and NADPH for AAI production. AAI synthesis reactions (90 PI) 
were allowed to continue for 30 min at 22°C and contained 0.24 mM AdoMet, 1 .I pg of H6-Tral per 
milliliter, 10 mM tris-HCI (pH 7.4), 330 mM NaCI, 15% glycerol, 0.7 mM DTT, 2 mM EDTA, 25 mM 
MgSO,, and 0.1 mM FeSO,. Nondialyzed S28 extract (final concentration, 2.75 mg of protein per 
milliliter), dialyzed S28 extract (dS28) (final concentration, 2.75 mg of protein per milliliter), and 0.1 4 mM 
malonyl-CoA, 1.1 mM NADH, and 1 .I mM NADPH were added as indicated. 

Assay components P-Galactosidase AAI production (pmol min-I 
specific activity per microgram of H6-Tral) 

S28 
dS28 
dS28, malonyl-CoA, NADPH 
dS28, malonyl-CoA, NADH 
dS28, malonyl-CoA 
dS28, NADPH 

3-0x0-octanoyl group to the thiol group of 
ACP. We therefore incubated OOTC with 
ACP, precipitated ACP with trichloroace- 
tic acid (TCA) to stop the reaction and 
remove OOTC (20), and visualized ACP 
and acyl-ACP by native gel electrophoresis. 
Acyl-ACPs migrate slightly faster than 
ACP in these gels (21 ). Incubation of ACP 
with OOTC increased the mobility of 
-50% of the ACP molecules (Fig. 3B), 
strongly suggesting that this reaction treat- 
ed 3-0x0-octanoyl-ACP (OOACP). 

To determine whether OOACP is a sub- 
strate for AAI biosynthesis, we incubated 
OOACP with H6-TraI, and radiolabeled 
AdoMet in a defined buffer, and fraction- 

ated the products by reversed-phase HPLC. 
Both the bioactive fraction and the radio- 
activity coeluted with chemically synthe- 
sized AAI (Fig. 1, E and F). Control reac- 
tions lacking H6-TraI did not produce de- 
tectable AAI (Fig. 1G). In reactions con- 
taining H6-TraI, OOACP, and AdoMet, 
the maximum rate of AAI synthesis was 
1.03 mol min-' per mol of H6-TraI (22). 
The Michaelis constant (KM) for AdoMet 
was 48 pM [regression coefficient (R2) = 
0.99241, and the KM for OOACP was 0.33 
pM (R2 = 0.9807). The maximum V 
(V,,,,,) of TraI may seem low compared 
with those of other enzymes and could be 
due to loss of activity during purification. 

Fig. 3. Chemical acylation of ACP by OOTC. (A) Proton NMR of OOTC. To synthesize OOTC, we 
combined hexanoylchloride with Meldrum's acid in methylene chloride in the presence of pyridine at 0°C 
for 1 hour and then at 23°C for an additional hour. The resulting hexanoyl-Meldrum's acid was dried by 
rotoevaporation, characterized by proton NMR (CDCIJ and Fourier transform infrared spectroscopy 
(FTIR), and resuspended in benzene. A mixture of 12 mmol of 2-dimethylaminoethanethiol and 10 mmol 
of hexanoyl-Meldrum's acid in 100 ml of dry benzene was refluxed for 3 hours and allowed to stand at 
23°C for 1.5 hours. Benzene was removed by rotoevaporation, and the resulting red-orange oil was 
applied directly to a silica gel column (3 cm by 30 cm, 22 grade, 60 to 200 mesh) and eluted isocratically 
with diethylether-acetone (30:70 v/v). The eluate was dried by rotoevaporation. The result was an 
orange oil, which was characterized by proton and 13C NMR (CDCI3) and FTIR. The oil (7 mmol) was 
dissolved in diethylether-acetone (60:40 v/v), and 9 mmol of methyl iodide was added. After overnight 
incubation at 23"C, the solvents were rotoevaporated. The residue (OOTC) was characterized by proton 
NMR (D,O). The presence of the 3-0x0 group, the thioester, and the 2-methylene group was confirmed 
by FTIR and 13C NMR (D20). A 0.5 M OOTC stock solution was prepared in acetonitrile. 2-Dimethyl- 
aminoethenethiol was purchased from Research Organics; all other reagents were purchased from 
Aldrich. (B) Conformationally sensitive polyacrylamide gel electrophoresis (PAGE) (21) of ACP (lane 1) 
and OOACP (lane 2). ACP (Sigma) was treated with DTTand hydroxylamine, precipitated with TCA, and 
washed as described. We performed the acylation reaction by incubating ACP (10 mg ml-I) and 5 mM 
OOTC in a 40 mM phosphate buffer containing 25 mM NaCI, 5% glycerol, and 2 mM EDTA (pH 7.4). 
After 1 hour the reaction was stopped by precipitation with TCA. The precipitated ACP and ACP 
derivatives were washed as above and resuspended in the same buffer, but containing 50% glycerol. 
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Alternatively, a low V,n,, in vivo could be 
advantageous. Because A.  tumefaciens tra 
genes can be induced by as low a concen- 
tration as 0.1 nM AAI (6, 7), a higher rate 
of AAI synthesis could cause target gene 
induction at inappropriately low cell densi- 
ties. Control reactions containing ACP in 
place of O O A C P  did not produce AAI. 

To  determine whether 3-0x0-octanoyl- 
CoA (OOCoA) can substitute for OOACP 
as a H6-TraI substrate, we used O O T C  
to acylate CoA, purified OOCoA by re- 
versed-phase HPLC, and verified its struc- 
ture by nuclear magnetic resonance (NMR) 
spectroscopy (23). Reactions containing 
OOCoA, H,-TraI, and AdoMet but lacking 
O O A C P  did not produce detectable AAI 
(15). We also tested whether compounds 
other than AdoMet could provide the ho- 
moserine lactone moiety. None of the com- 
pounds that we tested (methionine, homo- 
serine, homoserine lactone, homoserine 
thiolactone, homocysteine, S-adenosyl- 
homocysteine, S-adenosyl-ethionine, cysta- 
thionine, o-homoserine phosphate, and ho- 
mocysteine thiolactone) served as sub- 
strates. In reactions containing H,-TraI, 
OOACP, and AdoMet, none of the tested 
compounds detectably inhibited the reac- 
tion (15). However, homoserine lactone 
and homocysteine thiolactone reacted inef- 
ficiently with OOACP or OOCoA in a 
TraI-independent manner. 

In addition to acylating thiol groups, 
OOTC should be able to acylate other nu- 

Fig. 4. A model to describe AAI biosynthesis. 
Tral acquires a 3-0x0-octanoyl group from 
3-0x0-octanoyl ACP and catalyzes formation of 
the amlde bond between the amino group of 
AdoMet and C-1 of the fatty acid. This reacton is 
followed by lactonization, creating MI and 5'- 
methylthioadenosine (MTA). The covalent acyl- 
Tral intermediate was first proposed by Baldwin 
and co-workers (2), and the formation of this in- 
termediate is supporied by experiments in which 
OOTC was used to acylaie Tral (24). 

cleophiles ~ncluding primary amines, al- 
though at lower rates. We therefore tested 
the ability of O O T C  to chemically acylate 
other compounds. Incubation of OOTC 
with homoserine lactone produced AAI. 
Incubation of O O T C  with homocysteine 
thiolactone also produced a similar com- 
pound (possibly 3-0x0-octanoyl-homocys- 
teine thiolactone), which also activated 
TraR. Similarly, incubation of O O T C  with 
AdoMet produced AAI. This nonenzymat- 
ic reaction may provide insights about 
TraI-mediated AAI synthesis. Chemical or 
enzymatic synthesis of AAI from AdoMet 
requires two steps: acylation of the amino 
group of AdoMet and lactonization. Acyla- 
tion of the amino group and the consequent 
loss of its positive charge enhances the 
nucleophilicity of the carboxyl group. We 
propose that this enhanced nucleophilicity 
may facilitate ring closure (Fig. 4 ) .  The 
enzyme mechanism is likely to be a ping- 
pong reaction, in which OOACP serves as 
the first substrate, which produces the en- 
zyme intermediate 3-0x0-octanoyl-TraI 
(OOTraI). This hypothesis is supported by 
the result that chemically acylated TraI 
(OOTraI) can react with AdoMet to form 
AAI in the absence of OOACP (24). 
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