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Autosomal dominant polyeystic  kidney
disease (ADPKD) accounts for 8 to 10% of
all end-stage renal disease worldwide (1). Its
principal clinical manifestation is bilateral
renal cysts that result in chronic renal fail-
ure in about 45% of affected individuals by
age 60 (1). Hypertension and liver cysts are
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common, and the involvement of other
organ systems (2) lends support to the view
that polycystic kidney disease is a systemic
disorder (1). Genetic heterogeneity in AD-
PKD has been demonstrated after linkage
was initially discovered for the gene on
chromosome 16p13.3 (PKDI1) (3, 4). The
second gene, PKD2, has been localized on
chromosome 4q21-23 and accounts for ap-
proximately 15% of affected families (5, 6).
At least one more gene for ADPKD is
known to exist (4). Clinical studies have
demonstrated a milder phenotype for the
non-PKDI1 forms (7). This report describes
the positional cloning (8) of a candidate
gene in which truncating mutations have
been identified in three PKD2 families (9).

The PKD2 genetic interval is flanked by
the polymorphic markers D4S231 and
D4S414/423 (5). We constructed a yeast
artificial chromosome (YAC) contig and
high-density sequence tag site (STS) map
of this region (10) (Fig. 1). Genetic studies
in affected families using physically ordered
polymorphic markers led to several progres-
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sive refinements of the PKD2 interval (11,
12). The closest unambiguous flanking ge-
netic markers are AFMa059xc9 proximally
and AICAL1 distally (Fig. 1, A and B) (10).
We constructed a cosmid- and Pl-based
(13) contig extending over ~680 kb from
AICA1 to the region centromeric to the
polymorphic marker JSTG3 (Fig. 1C) (14).
This contig contains a single gap of less
than 40 kb. Complementary DNAs corre-
sponding to genes in this region were iso-
lated with inserts from the genomic clones
used to screen either a human fetal brain or
adult kidney cDNA library (15). The map-
ping of the cDNA clones identified was
confirmed, and the clones were sequenced.
These sequences were analyzed to identify
open reading frames (ORFs), and database
searches with the BLAST algorithms (16)
were performed.

One group of cDNA clones, collectively
termed cTM-4, were initially isolated with
insert DNA from cosmid c44a9 from the
chromosome 4-specific cosmid library (Fig.
1D) (13, 15). None of the cTM-4 clones
have homology at the nucleotide level to
any known genes, although two randomly
sequenced cDNA clones were identified
(Fig. 1E). Northern (RNA) blot hybridiza-
tion with the cTM-4B3-3 insert (Fig. 1E)
revealed a ~5.4-kb transcript expressed in
most fetal and adult tissues (Fig. 2). cTM-4
is strongly expressed in ovary, fetal and
adult kidney, testis, small and large intes-
tine, and fetal lung. Peripheral blood leuko-
cytes were the only tissue tested in which
expression was not detected.

Initial database searches with the six
translated reading frames obtained from the
sequence of clone ¢TM-4B3-3 revealed ho-
mology at the amino acid level with the
PKDI gene product also called polycystin
(17, 18). On the basis of its map location,
pattern of expression, and the observed ho-
mology, the cTM-4 gene was further inves-
tigated as a candidate for PKD2. Nine over-
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lapping ¢cDNA clones were completely se-
quenced in both directions (Fig. 1E). The
5" end of the cTM-4 gene contains a pair of
genomic Not [ sites, and the 3’ end extends
in the telomeric direction beyond the end
of the P1 clone p157n2 into cosmid c44a9
(Fig. 1, C and D). The gene extends over 68
kb of the genome.

The consensus 5057-base pair (bp) se-
quence (19) is represented schematically in
Fig. 1E. A translation start site with a good
Kozak consensus sequence (5'-ACCGC-
GATGG-3') (20) was identified 67 bp from

Fig. 1. Positional cloning
of PKD2. (A) Subset of A
STSs from the high-den-
sity map of the PKD2 re-
gion showing polymor-
phic loci flanking the in-

|- D4S231
- D4S2410
- D4S2284

the 5’ end of the K1-1 clone and 61 bp after
an in-frame stop codon. It is followed by a
2904-bp ORF followed, in turn, by several
in-frame stop codons. The 3’ untranslated
region is 2086 bp long and contains a con-
sensus polyadenylation signal.

We next analyzed the DNA sequence
and expression profiles of cTM-4 in unre-
lated affected individuals from PKD2 fam-
ilies (3, 5, 12). We used reverse-tran-
scribed RNA and genomic DNA tem-
plates to generate polymerase chain reac-
tion (PCR) products for single-strand

A
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terval. JSTG3 and AICA1 «
are two of nine microsat- B

ellite markers in this re-

gion developed by our

groups (10). SPP1 (os-

teopontin, STS4-1078) C

and D4S1171 were used
to screen the P1 library
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lished linkage maps and T e —_—
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are in Morgans along P254d15 #—7p——— Shooss
chromosome 4. (B) Rep- Not l/g ! okb
resentative mega-YACs E i —— Ki5 —
(30) and their STS con- ) K11

tent. The mega-YACs «—E——ﬂmggs‘nw

form a contig around the = —— cTMd4B3-3

PKD2 region. (C) Mini- — Rl

mum tiing path of the ) cTM4B3-7
cosmid and P1 contig in ye33g07

the PKD2 region (14). ser > M"M‘:‘ﬂa-

Clone names beginning o i 1 2 3 4 5 "

with ““c’’ and *‘p"’ refer to
cosmid and P1 clones,

respectively; addresses are from the original arrayed libraries (13). The clones containing JSTG3 and
AICAT1 are shown; a single gap of <40 kb is indicated by the arrow. (D) Detail of the portion of the contig
containing the PKD2 candidate gene, cTM-4. (E) Overlapping map of nine cDNA clones for cTM-4 and a
composite schematic at the bottom. Clones K1-1 and K1-5 are from the adult kidney library; clones
yi63h09 and yc93g07 were identified by GenBank searching and are from the normalized infant brain
library (37); all other clones are from the fetal brain library (75). Shaded areas represent chimeric portions

of clones.

Fig. 2. Expression of the PKD2
candidate gene. The insert from ‘
cTM-4B3-3 (Fig. 1E) was used as a 258
hybridization probe on mRNA blots
containing human _tissues (Clone-
tech, Palo Alto, California). Hybrid-
ization was as described (74) with-
out pre-competition and with a final
wash stringency of 0.6X SSC and

24 =

12345678 910111213141516 171819 20

ﬁ-Acnn""--‘r" - e W -

0.1% SDS at 65°C. Tissues in numbered lanes are as follows: (1) heart, (2) brain, (3) placenta, (4) lung, (5)
liver, (6) skeletal muscle, (7) kidney, (8) pancreas, (9) spleen, (10) thymus, (11) prostate, (12) testis, (13)
ovary, (14) small intestine, (15) colon, (16) leukocytes, (17) fetal brain, (18) fetal lung, (19) fetal liver, and (20)
fetal kidney. At the bottom, B-actin hybridization to the same blots is used to compare relative mRNA

loading within each blot.
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conformational analysis (SSCA) (21).
Genomic PCR products of SSCA variants
identified in three families were subjected
to direct sequencing. Each affected indi-
vidual was found to be heterozygous for a
single base change that resulted in a non-
sense mutation (Fig. 3) (21). The muta-
tion in family 97 is a G-to-A transition in
the codon for Trp®® (Figs. 3 and 4). The
mutations in the Cypriot families 1605
and 1601 are C-to-T transitions in codons
Arg’™ and GIn*%, respectively (Figs. 3
and 4). Using either the resultant loss of a
restriction site in families 97 and 1605 or
the SSCA pattern in family 1601, we were
able to demonstrate segregation of the mu-
tation with the disease phenotype in each
family (Fig. 3) (21). Analysis of between
90 and 100 normal chromosomes failed to
show the predicted affected allele in any
case, making it less likely that these se-
quence differences represent anonymous
polymorphisms (10). These limited find-
ings do not provide evidence for clustering
of mutations in PKD?2.

The identification of mutations that dis-
rupt the predicted translation product of
c¢TM-4 and the segregation of these muta-
tions with the ADPKD phenotype in three
well-characterized PKD2 pedigrees provide
strong evidence that cTM-4 is the PKD2
gene. The putative translation product of
the cTM-4 ORF is a 968—amino acid se-
quence with a calculated molecular mass of
110 kD. Modeling with several hydropho-
bicity algorithms (22) suggests that cTM-4
is an integral membrane protein with six
(range, five to eight) membrane-spanning
domains and intracellular NH,- and
COOH-termini (23). Of the six highest
scoring domains, the fourth transmem-
brane domain (tm4, Fig. 4) produced the
lowest scores but was consistently predict-
ed to be a membrane span by several anal-
yses (22). The positive inside rule (23)—
that positively charged amino acids usual-
ly face the cytoplasm in transmembrane
proteins—strongly supports the predicted
topology. The majority of the N-glycosy-
lation sites, occurring in the segment be-
tween tml and tm2 (Fig. 4), are predicted
to be extracellular. In addition, potential
phosphorylation sites were identified pri-
marily in the COOH-terminal region, as
was a putative EF-hand domain (24), and
this region is predicted to be intracellular
(Fig. 4). If a stable protein product is
produced, the mutations in families 97 and
1601 are expected to result in a product
with an intact intracellular NH,-terminal
domain, first transmembrane domain, and
part of the first extracellular loop. The
mutation in family 1605 is predicted to
result in a product lacking the portion of
the intracellular COOH-terminus that
contains several phosphorylation sites and



Fig. 3. Mutations in
PKD2. Analysis of genom-
ic PCR products (27) in
three PKD2 families. The
left panel shows the re-
sults of direct sequencing
of genomic PCR products
from affected individuals.
The arrows denote double
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Fig. 4. Deduced amino acid se-
quence of PKD2 (79). (A) Alignment
of cTM-4 with PKD1 (gb|U24497),
the C. elegans homolog of PKD1
(ZK945.9; swiss| Q09624), and
VACCa,z_, (pir|B54972) from
BESTFIT (32): identity to cTM-4 is
indicated with a vertical line and
similarity to cTM-4 with two dots (:).
Numbers in parentheses refer to
amino acids in respective sequenc-
es. The putative transmembrane
domains are tm1 to tm6 (22). Pre-
dicted N-glycosylation sites are
marked with an asterisk. Potential
phosphorylation sites with strong
consensus sequences are marked
as follows: plus sign, phosphoryla-
tion by protein kinase C; open
square, phosphorylation by
guanosine 3',5'-cyclic monophos-
phate—dependent kinase (Ser®26 is
also consistent with a protein ki-
nase A site); and open circle, phos-
phorylation by casein kinase. The
sites of the nonsense mutations
(Fig. 3) are indicated by arrows la-
beled with the respective family
numbers. The EF-hand domain is
in-icated by the dashed line. (B)
Alignment of the EF-hand domain
with the EF-hand test sequence
(24). Theresidues E, G, |, and E, the
latter being a Ca?* coordination
vertex, are the expected residues at

the indicated positions in the EF-hand. Positions indicated as ‘‘n’’ are expect-
ed to have hydrophobic amino acids (L, I, V, F, M); those denoted with an
asterisk should be oxygen-containing amino acids (D, N, E, Q, S, T) making up
the remainder of coordination vertices for Ca?* binding; the -Y vertex can be
any amino acid. The Leu (L) in PKD2 in place of the lle (I} is likely a permissible
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the EF-hand domain (Fig. 4).

There is ~25% identity and ~50% sim-
ilarity between the putative translation
product of PKD2 and ~450 amino acids of
PKDI and its Caenorhabditis elegans ho-
molog, ZK945.9 (Fig. 4). There is a compa-
rable degree of similarity with ~270 resi-
dues of the voltage-activated Ca?™ channel
o, (VACCa, g ,; Fig. 4). The similarity
between PKD2 and PKDI1 (and ZK945.9)
extends over the region tml to tm6 in
PKD?2 but does not include the NH,- and
COOH-terminal domains. The correspond-
ing region of PKD1 has been predicted to
contain four transmembrane segments (18),
three of these corresponding to tml, tm2,
and tm5 in PKD2 and the fourth localizing
between tm5 and tm6 of PKD2. The regions
corresponding to tm3 and tm4 of PKD2
were not predicted to be membrane spans in
that report (18).

The similarity to VACCa,, (25) is
presented as the strongest example of a
general homology of PKD?2 to the family of
voltage-activated Ca?™ and Na* «, chan-
nel proteins. These channel proteins con-
tain four homologous domains (I through
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(754-782)

(EF-hand test)

(coordination vertices)

substitution (24); PKD2 has GIn (Q) in place of the consensus Gly (G) as is the
case with EF-hand domains in the «; Na* channels (24). Abbreviations for the
amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G,
Gly; H, His; |, lle; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, GIn; R, Arg; S, Ser;
T, Thr; V, Val, W, Trp; and Y, Tyr.
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IV), each with six transmembrane spans
(S1 to S6), which are predicted to form the
pore structure (25, 26). The membrane
spans tm2 through tm6 as well as the inter-
vening intracellular loops of PKD2 have
similarity with corresponding segments in
the o, channels (Fig. 4) (25). The similarity
in the COOH-terminal region includes the
putative EF-hand domain (Fig. 4) (24).
This domain in PKD2 scores highly on the
EF-hand test (Fig. 4B), with identity at all
the critical coordination vertices (24). EF-
hand domains are specialized helix-loop-
helix motifs that have Ca?* binding activ-
ity in ~70% of the proteins in which they
occur (27). Unpaired EF-hand sequences
have recently been implicated in Ca’"-
sensitive inactivation of some forms of L-
type VACCa, (28). EF-hand domains that
do not coordinate Ca®* remain important
to protein function (24, 29).

Despite the observed homology to
PKD1, the predicted structure of the PKD2
protein does not directly suggest a role in
cell-cell or matrix-cell signaling similar to
that proposed for PKD1 (17, 18). PKD2
does not have the large NH,-terminal ex-
tracellular domain and the associated motifs
found in PKD1 (17, 18). It is possible that
PKD2 functions in a parallel pathway with
PKD1. However, given that the clinical
diseases produced by mutations in PKDI
and PKD2 exhibit an identical spectrum of
organ involvement, differing only in rela-
tive rates of progression of cystic changes,
hypertension, and the development of
end-stage renal disease, the most likely
scenario is that PKD2 associates with it-
self, with PKD1, or with other proteins
and ligands as part of a common signal
transduction pathway.

PKD2 bears some similarity to the o,
Ca?* (and Na%) channels but has only six
membrane spans. If it formed homo- or het-
eromultimeric complexes (for example, with
itself, with the homologous portion of PKD1,
or with another protein), it could function as
an ion channel or pore in a manner similar
to the K* channels (26). The observed ho-
mologies, the presence of a pair of conserved
basic residues (Lys’”® and Lys°’®) in the
fourth transmembrane domain, and the pre-
dicted even number of membrane spans are
consistent with such a role (26). In such a
model, PKD1 could act as the regulator of
the PKD2 channel activity, perhaps with
Ca’* as a second messenger in a signal trans-
duction pathway. The discovery of PKD2
raises the possibility that the ADPKD phe-
notype may in part be the result of a defect in
an unknown transport function.
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